Bugra Arda Zincir, Burak Zincir, Cengiz Deniz, Hasan Bora Usluer, Yasin Arslanoglu
求助PDF
{"title":"通过案例研究调查船舶上联合使用 CCS 和 SCR 对环境的影响","authors":"Bugra Arda Zincir, Burak Zincir, Cengiz Deniz, Hasan Bora Usluer, Yasin Arslanoglu","doi":"10.1002/ghg.2291","DOIUrl":null,"url":null,"abstract":"<p>The environmental and economic performance of a post-combustion solvent-based carbon capture system (CCS) combined with a selective catalytic reduction (SCR) system is investigated on a 48,600 kW engine container ship to meet the International Maritime Organization's emission reduction strategies through 2050. The proposed system uses aqueous ammonia to mitigate the produced CO<sub>2</sub> and NO<sub>X</sub> emissions onboard a ship. Moreover, the combined system is investigated through a voyage-based case study using an engine room simulator, assuming that CCS and SCR are implemented on the reference ship. During the case study, the referenced container ship sailed from Rotterdam to New York, and the estimations were made by using Netpas Distance 4.0 software program. Results indicate that a total of 3,606.04 ton-CO<sub>2</sub> and 92.40 ton-NO<sub>X</sub> are produced, while 3,345.43 ton-CO<sub>2</sub> and 40.67 ton-NO<sub>X</sub> are captured during the voyage. Furthermore, an economic analysis is carried out after the case study. Findings of the economic analysis are: CAPEX of CCS is $32.07 MM and SCR is $2.19 MM, while OPEX of CCS and SCR are $188,873 and $103,681, respectively. In addition, it was calculated that implementing CCS could avoid the CO<sub>2</sub> tax cost of $19,472, while the economic value of the CO<sub>2</sub> captured was $113,590. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 4","pages":"607-619"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental impact investigation of combined CCS and SCR on a ship by a case study\",\"authors\":\"Bugra Arda Zincir, Burak Zincir, Cengiz Deniz, Hasan Bora Usluer, Yasin Arslanoglu\",\"doi\":\"10.1002/ghg.2291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The environmental and economic performance of a post-combustion solvent-based carbon capture system (CCS) combined with a selective catalytic reduction (SCR) system is investigated on a 48,600 kW engine container ship to meet the International Maritime Organization's emission reduction strategies through 2050. The proposed system uses aqueous ammonia to mitigate the produced CO<sub>2</sub> and NO<sub>X</sub> emissions onboard a ship. Moreover, the combined system is investigated through a voyage-based case study using an engine room simulator, assuming that CCS and SCR are implemented on the reference ship. During the case study, the referenced container ship sailed from Rotterdam to New York, and the estimations were made by using Netpas Distance 4.0 software program. Results indicate that a total of 3,606.04 ton-CO<sub>2</sub> and 92.40 ton-NO<sub>X</sub> are produced, while 3,345.43 ton-CO<sub>2</sub> and 40.67 ton-NO<sub>X</sub> are captured during the voyage. Furthermore, an economic analysis is carried out after the case study. Findings of the economic analysis are: CAPEX of CCS is $32.07 MM and SCR is $2.19 MM, while OPEX of CCS and SCR are $188,873 and $103,681, respectively. In addition, it was calculated that implementing CCS could avoid the CO<sub>2</sub> tax cost of $19,472, while the economic value of the CO<sub>2</sub> captured was $113,590. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.</p>\",\"PeriodicalId\":12796,\"journal\":{\"name\":\"Greenhouse Gases: Science and Technology\",\"volume\":\"14 4\",\"pages\":\"607-619\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Greenhouse Gases: Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2291\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2291","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
引用
批量引用