genesis最新文献

筛选
英文 中文
CircSCNN1A inhibits the proliferation, migration and invasion of renal cell carcinoma cells by decreasing CLDN8 expression through miR-590-5p CircSCNN1A 通过 miR-590-5p 降低 CLDN8 的表达,从而抑制肾细胞癌细胞的增殖、迁移和侵袭。
IF 1.5 4区 生物学
genesis Pub Date : 2024-05-19 DOI: 10.1002/dvg.23599
Tingting Guo, Wanjuan Xiong, Chong Liu, Li Zhu, Ling Xie
{"title":"CircSCNN1A inhibits the proliferation, migration and invasion of renal cell carcinoma cells by decreasing CLDN8 expression through miR-590-5p","authors":"Tingting Guo,&nbsp;Wanjuan Xiong,&nbsp;Chong Liu,&nbsp;Li Zhu,&nbsp;Ling Xie","doi":"10.1002/dvg.23599","DOIUrl":"10.1002/dvg.23599","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Increasing evidence suggests that circular RNA (circRNA) plays a regulatory role in the progression of renal cell carcinoma (RCC). However, the precise function and underlying mechanism of circSCNN1A in RCC progression still remain unclear.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>The expression levels of circSCNN1A, microRNA-590-5p (miR-590-5p), claudin 8 (CLDN8), cyclin D1, matrix metalloprotein 2 (MMP2), MMP9, E-cadherin, N-cadherin and vimentin were detected by a quantitative real-time polymerase chain reaction and Western blotting analysis. Immunohistochemistry assay was performed to analyze the positive expression rate of CLDN8. Cell proliferation was investigated by cell colony formation, 5-Ethynyl-2′-deoxyuridine and DNA content quantitation assays. Cell migration and invasion were assessed by wound-healing and transwell invasion assays. Interactions among circSCNN1A, miR-590-5p and CLDN8 were identified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Xenograft mouse model assay was conducted to verify the effect of circSCNN1A on tumor formation in vivo.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>CircSCNN1A and CLDN8 expression were significantly downregulated, while miR-590-5p was upregulated in both RCC tissues and cells. CircSCNN1A overexpression inhibited RCC cell proliferation, migration and invasion, accompanied by decreases of cyclin D1, MMP2, MMP9, N-cadherin and vimentin expression and an increase of E-cadherin expression. CircSCNN1A acted as a miR-590-5p sponge and regulated RCC cell processes by binding to miR-590-5p. CLDN8, a target gene of miR-590-5p, was involved in the regulation of the biological behaviors of RCC cells by miR-590-5p. In addition, circSCNN1A induced CLDN8 production by interacting with miR-590-5p. Further, circSCNN1A suppressed tumor formation in vivo.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>CircSCNN1A inhibited RCC cell proliferation, migration and invasion by regulating the miR-590-5p/CLDN8 pathway.</p>\u0000 </section>\u0000 </div>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 3","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphodiesterase 5A regulates the vomeronasal pump in mice 磷酸二酯酶 5A 调节小鼠的绒毛膜泵
IF 1.5 4区 生物学
genesis Pub Date : 2024-05-13 DOI: 10.1002/dvg.23603
Dennean S. Lippner, Jiang Xu, Siqi Ma, Johannes Reisert, Haiqing Zhao
{"title":"Phosphodiesterase 5A regulates the vomeronasal pump in mice","authors":"Dennean S. Lippner,&nbsp;Jiang Xu,&nbsp;Siqi Ma,&nbsp;Johannes Reisert,&nbsp;Haiqing Zhao","doi":"10.1002/dvg.23603","DOIUrl":"10.1002/dvg.23603","url":null,"abstract":"<div>\u0000 \u0000 <p>The vomeronasal organ (VNO) is a specialized chemoreceptive structure in many vertebrates that detects chemical stimuli, mostly pheromones, which often elicit innate behaviors such as mating and aggression. Previous studies in rodents have demonstrated that chemical stimuli are actively transported to the VNO via a blood vessel-based pumping mechanism, and this pumping mechanism is necessary for vomeronasal stimulation in behaving animals. However, the molecular mechanisms that regulate the vomeronasal pump remain mostly unknown. In this study, we observed a high level of expression of phosphodiesterase 5A (PDE5A) in the vomeronasal blood vessel of mice. We provided evidence to support the potential role of PDE5A in vomeronasal pump regulation. Local application of PDE5A inhibitors—sildenafil or tadalafil—to the vomeronasal organ (VNO) reduced stimulus delivery into the VNO, decreased the pheromone-induced activity of vomeronasal sensory neurons, and attenuated male–male aggressive behaviors. PDE5A is well known to play a role in regulating blood vessel tone in several organs. Our study advances our understanding of the molecular regulation of the vomeronasal pump.</p>\u0000 </div>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 3","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140912480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPR-Cas9 delivery strategies and applications: Review and update CRISPR-Cas9 传输策略和应用:回顾与更新。
IF 1.5 4区 生物学
genesis Pub Date : 2024-05-10 DOI: 10.1002/dvg.23598
Ali Alizadeh Severi, Bahman Akbari
{"title":"CRISPR-Cas9 delivery strategies and applications: Review and update","authors":"Ali Alizadeh Severi,&nbsp;Bahman Akbari","doi":"10.1002/dvg.23598","DOIUrl":"10.1002/dvg.23598","url":null,"abstract":"<div>\u0000 \u0000 <p>Nowadays, a significant part of the investigations carried out in the medical field belong to cancer treatment. Generally, conventional cancer treatments, including chemotherapy, radiotherapy, and surgery, which have been used for a long time, are not sufficient, especially in malignant cancers. Because genetic mutations cause cancers, researchers are trying to treat these diseases using genetic engineering tools. One of them is clustered regularly interspaced short palindromic repeats (CRISPR), a powerful tool in genetic engineering in the last decade. CRISPR, which forms the CRISPR-Cas structure with its endonuclease protein, Cas, is known as a part of the immune system (adaptive immunity) in bacteria and archaea. Among the types of Cas proteins, Cas9 endonuclease has been used in many scientific studies due to its high accuracy and efficiency. This review reviews the CRISPR system, focusing on the history, classification, delivery methods, applications, new generations, and challenges of CRISPR-Cas9 technology.</p>\u0000 </div>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 3","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140899192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RSG1 is required for cilia-dependent neural tube closure 纤毛依赖性神经管闭合需要 RSG1
IF 1.5 4区 生物学
genesis Pub Date : 2024-05-09 DOI: 10.1002/dvg.23602
David Engelhardt, Amber Marean, David McKean, Juliette Petersen, Lee Niswander
{"title":"RSG1 is required for cilia-dependent neural tube closure","authors":"David Engelhardt,&nbsp;Amber Marean,&nbsp;David McKean,&nbsp;Juliette Petersen,&nbsp;Lee Niswander","doi":"10.1002/dvg.23602","DOIUrl":"https://doi.org/10.1002/dvg.23602","url":null,"abstract":"<div>\u0000 \u0000 <p>Cilia play a key role in the regulation of signaling pathways required for embryonic development, including the proper formation of the neural tube, the precursor to the brain and spinal cord. Forward genetic screens were used to generate mouse lines that display neural tube defects (NTD) and secondary phenotypes useful in interrogating function. We describe here the <i>L3P</i> mutant line that displays phenotypes of disrupted Sonic hedgehog signaling and affects the initiation of cilia formation. A point mutation was mapped in the <i>L3P</i> line to the gene <i>Rsg1</i>, which encodes a GTPase-like protein. The mutation lies within the GTP-binding pocket and disrupts the highly conserved G1 domain. The mutant protein and other centrosomal and IFT proteins still localize appropriately to the basal body of cilia, suggesting that RSG1 GTPase activity is not required for basal body maturation but is needed for a downstream step in axonemal elongation.</p>\u0000 </div>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 3","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140895189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A knock-in allele of Hand2 expressing Dre recombinase 表达 Dre 重组酶的 Hand2 基因敲入等位基因
IF 1.5 4区 生物学
genesis Pub Date : 2024-05-04 DOI: 10.1002/dvg.23601
Nicholas W. Plummer, Kathleen G. Smith, Patricia Jensen
{"title":"A knock-in allele of Hand2 expressing Dre recombinase","authors":"Nicholas W. Plummer,&nbsp;Kathleen G. Smith,&nbsp;Patricia Jensen","doi":"10.1002/dvg.23601","DOIUrl":"https://doi.org/10.1002/dvg.23601","url":null,"abstract":"<p>HAND2 is a basic helix–loop–helix transcription factor with diverse functions during development. To facilitate the investigation of genetic and functional diversity among <i>Hand2</i>-expressing cells in the mouse, we have generated <i>Hand2</i><sup><i>Dre</i></sup>, a knock-in allele expressing Dre recombinase. To avoid disrupting <i>Hand2</i> function, the Dre cDNA is inserted at the 3′ end of the <i>Hand2</i> coding sequence following a viral 2A peptide. <i>Hand2</i><sup><i>Dre</i></sup> homozygotes can therefore be used in complex crosses to increase the proportion of useful genotypes among offspring. Dre expression in mid-gestation <i>Hand2</i><sup><i>Dre</i></sup> embryos is indistinguishable from wild-type <i>Hand2</i> expression, and <i>Hand</i><sup><i>Dre</i></sup> efficiently recombines rox target sites in vivo. In combination with existing Cre and Flp mouse lines, <i>Hand2</i><sup><i>Dre</i></sup> will therefore extend the ability to perform genetic intersectional labeling, fate mapping, and functional manipulation of subpopulations of cells characterized by developmental expression of <i>Hand2</i>.</p>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 3","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dvg.23601","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Following the p63/Keratin5 basal cells in the sensory and non-sensory epithelia of the vomeronasal organ 绒毛器官感觉上皮和非感觉上皮中的 p63/Keratin5 基底细胞
IF 1.5 4区 生物学
genesis Pub Date : 2024-04-26 DOI: 10.1002/dvg.23596
Noah M. LeFever, Raghu Ram Katreddi, Nikki M. Dolphin, Nick A. Mathias, Paolo E. Forni
{"title":"Following the p63/Keratin5 basal cells in the sensory and non-sensory epithelia of the vomeronasal organ","authors":"Noah M. LeFever,&nbsp;Raghu Ram Katreddi,&nbsp;Nikki M. Dolphin,&nbsp;Nick A. Mathias,&nbsp;Paolo E. Forni","doi":"10.1002/dvg.23596","DOIUrl":"https://doi.org/10.1002/dvg.23596","url":null,"abstract":"<div>\u0000 \u0000 <p>The vomeronasal organ (VNO) is a part of the accessory olfactory system, which detects pheromones and chemical factors that trigger a spectrum of sexual and social behaviors. The vomeronasal epithelium (VNE) shares several features with the epithelium of the main olfactory epithelium (MOE). However, it is a distinct neuroepithelium populated by chemosensory neurons that differ from the olfactory sensory neurons in cellular structure, receptor expression, and connectivity. The vomeronasal organ of rodents comprises a sensory epithelium (SE) and a thin non-sensory epithelium (NSE) that morphologically resembles the respiratory epithelium. Sox2-positive cells have been previously identified as the stem cell population that gives rise to neuronal progenitors in MOE and VNE. In addition, the MOE also comprises p63 positive horizontal basal cells, a second pool of quiescent stem cells that become active in response to injury. Immunolabeling against the transcription factor p63, Keratin-5 (Krt5), Krt14, NrCAM, and Krt5Cre tracing experiments highlighted the existence of horizontal basal cells distributed along the basal lamina of SE of the VNO. Single cell sequencing and genetic lineage tracing suggest that the vomeronasal horizontal basal cells arise from basal progenitors at the boundary between the SE and NSE proximal to the marginal zones. Moreover, our experiments revealed that the NSE of rodents is, like the respiratory epithelium, a stratified epithelium where the p63/Krt5+ basal progenitor cells self-replicate and give rise to the apical columnar cells facing the lumen of the VNO.</p>\u0000 </div>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140648199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ectopic expression in commonly used transgenic Drosophila GAL4 driver lines 常用转基因果蝇 GAL4 驱动系的异位表达
IF 1.5 4区 生物学
genesis Pub Date : 2024-04-26 DOI: 10.1002/dvg.23600
Mattias Winant, Kurt Buhler, Patrick Callaerts
{"title":"Ectopic expression in commonly used transgenic Drosophila GAL4 driver lines","authors":"Mattias Winant,&nbsp;Kurt Buhler,&nbsp;Patrick Callaerts","doi":"10.1002/dvg.23600","DOIUrl":"https://doi.org/10.1002/dvg.23600","url":null,"abstract":"<div>\u0000 \u0000 <p>Transgenic tools such as the <i>GAL4/UAS</i> system in <i>Drosophila</i> have been used extensively to induce spatiotemporally controlled changes in gene expression and tissue-specific expression of a range of transgenes. We previously discovered unexpected expression of the commonly used <i>dilp2-GAL4</i> line in tracheal tissue which significantly impacted growth phenotypes. We realized that few <i>GAL4</i> lines have been thoroughly characterized, particularly when considering transient activity that may have significant impact on phenotypic readouts. Here, we characterized a further subset of 12 reportedly tissue-specific <i>GAL4</i> lines commonly used in genetic studies of development, growth, endocrine regulation, and metabolism. Ten out of 12 <i>GAL4</i> lines exhibited ectopic activity in other larval tissues, with seven being active in the larval trachea. Since this ectopic activity may result in phenotypes that do not depend on the manipulation in the intended target tissue, it is recommended to carefully analyze the outcome while taking this aspect into consideration.</p>\u0000 </div>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140648112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insertion of a neomycin selection cassette in the Amigo1 locus alters gene expression in the olfactory epithelium leading to region-specific defects in olfactory receptor neuron development 在Amigo1基因座上插入新霉素选择盒会改变嗅上皮细胞的基因表达,导致嗅觉受体神经元发育的区域特异性缺陷
IF 1.5 4区 生物学
genesis Pub Date : 2024-04-08 DOI: 10.1002/dvg.23594
Reesha Raja, Emilie Dumontier, Alina Phen, Jean-François Cloutier
{"title":"Insertion of a neomycin selection cassette in the Amigo1 locus alters gene expression in the olfactory epithelium leading to region-specific defects in olfactory receptor neuron development","authors":"Reesha Raja,&nbsp;Emilie Dumontier,&nbsp;Alina Phen,&nbsp;Jean-François Cloutier","doi":"10.1002/dvg.23594","DOIUrl":"https://doi.org/10.1002/dvg.23594","url":null,"abstract":"<p>During development of the nervous system, neurons connect to one another in a precisely organized manner. Sensory systems provide a good example of this organization, whereby the composition of the outside world is represented in the brain by neuronal maps. Establishing correct patterns of neural circuitry is crucial, as inaccurate map formation can lead to severe disruptions in sensory processing. In rodents, olfactory stimuli modulate a wide variety of behaviors essential for survival. The formation of the olfactory glomerular map is dependent on molecular cues that guide olfactory receptor neuron axons to broad regions of the olfactory bulb and on cell adhesion molecules that promote axonal sorting into specific synaptic units in this structure. Here, we demonstrate that the cell adhesion molecule Amigo1 is expressed in a subpopulation of olfactory receptor neurons, and we investigate its role in the precise targeting of olfactory receptor neuron axons to the olfactory bulb using a genetic loss-of-function approach in mice. While ablation of Amigo1 did not lead to alterations in olfactory sensory neuron axonal targeting, our experiments revealed that the presence of a neomycin resistance selection cassette in the <i>Amigo1</i> locus can lead to off-target effects that are not due to loss of Amigo1 expression, including unexpected altered gene expression in olfactory receptor neurons and reduced glomerular size in the ventral region of the olfactory bulb. Our results demonstrate that insertion of a neomycin selection cassette into the mouse genome can have specific deleterious effects on the development of the olfactory system and highlight the importance of removing antibiotic resistance cassettes from genetic loss-of-function mouse models when studying olfactory system development.</p>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dvg.23594","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140537942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Type 2 vomeronasal receptor-A4 subfamily: Potential predator sensors in mice 2 型绒毛受体-A4 亚家族:小鼠潜在的捕食者传感器
IF 1.5 4区 生物学
genesis Pub Date : 2024-04-08 DOI: 10.1002/dvg.23597
Andrea Rocha, Quynh Anh Thi Nguyen, Sachiko Haga-Yamanaka
{"title":"Type 2 vomeronasal receptor-A4 subfamily: Potential predator sensors in mice","authors":"Andrea Rocha,&nbsp;Quynh Anh Thi Nguyen,&nbsp;Sachiko Haga-Yamanaka","doi":"10.1002/dvg.23597","DOIUrl":"https://doi.org/10.1002/dvg.23597","url":null,"abstract":"<div>\u0000 \u0000 <p>Sensory signals detected by olfactory sensory organs are critical regulators of animal behavior. An accessory olfactory organ, the vomeronasal organ, detects cues from other animals and plays a pivotal role in intra- and inter-species interactions in mice. However, how ethologically relevant cues control mouse behavior through approximately 350 vomeronasal sensory receptor proteins largely remains elusive. The type 2 vomeronasal receptor-A4 (V2R-A4) subfamily members have been repeatedly detected from vomeronasal sensory neurons responsive to predator cues, suggesting a potential role of this receptor subfamily as a sensor for predators. This review focuses on this intriguing subfamily, delving into its receptor functions and genetic characteristics.</p>\u0000 </div>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140537943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The biological characteristics of chicken embryo mesenchymal stem cells isolated from chorioallantoic membrane 从绒毛膜分离出的鸡胚间充质干细胞的生物学特性
IF 1.5 4区 生物学
genesis Pub Date : 2024-04-08 DOI: 10.1002/dvg.23592
Yue Wu, Yunan Wang, Weijun Gan, Wei Jiang
{"title":"The biological characteristics of chicken embryo mesenchymal stem cells isolated from chorioallantoic membrane","authors":"Yue Wu,&nbsp;Yunan Wang,&nbsp;Weijun Gan,&nbsp;Wei Jiang","doi":"10.1002/dvg.23592","DOIUrl":"https://doi.org/10.1002/dvg.23592","url":null,"abstract":"<div>\u0000 \u0000 <p>Mesenchymal stem cells (MSCs) derived from fetal membranes (FMs) have the potential to exhibit immunosuppression, improve blood flow, and increase capillary density during transplantation. In the field of medicine, opening up new avenues for disease treatment. Chicken embryo chorioallantoic membrane (CAM), as an important component of avian species FM structure, has become a stable tissue engineering material in vivo angiogenesis, drug delivery, and toxicology studies. Although it has been confirmed that chorionic mesenchymal stem cells (Ch-MSCs) can be isolated from the outer chorionic layer of FM, little is known about the biological characteristics of MSCs derived from chorionic mesodermal matrix of chicken embryos. Therefore, we evaluated the characteristics of MSCs isolated from chorionic tissues of chicken embryos, including cell proliferation ability, stem cell surface antigen, genetic stability, and in vitro differentiation potential. Ch-MSCs exhibited a broad spindle shaped appearance and could stably maintain diploid karyotype proliferation to passage 15 in vitro. Spindle cells were positive for multifunctional markers of MSCs (CD29, CD44, CD73, CD90, CD105, CD166, OCT4, and NANOG), while hematopoietic cell surface marker CD34, panleukocyte marker CD45, and epithelial cell marker CK19 were negative. In addition, chicken Ch-MSC was induced to differentiate into four types of mesodermal cells in vitro, including osteoblasts, chondrocytes, adipocytes, and myoblasts. Therefore, the differentiation potential of chicken Ch-MSC in vitro may have great potential in tissue engineering. In conclusion, chicken Ch-MSCs may be an excellent model cell for stem cell regenerative medicine and chorionic tissue engineering.</p>\u0000 </div>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140537941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信