Gene Therapy最新文献

筛选
英文 中文
hafoe: an interactive tool for the analysis of chimeric AAV libraries after random mutagenesis. hafoe:一个分析随机突变后嵌合AAV文库的交互式工具。
IF 4.6 3区 医学
Gene Therapy Pub Date : 2025-07-08 DOI: 10.1038/s41434-025-00548-3
Tatevik Jalatyan, Erik Aznauryan, Rokib Hasan, Valeri Vardanyan, Stepan Nersisyan, David B Thompson, Noah Davidsohn, Sanya Thomas, Simon van Haren, Jenny Tam, Denitsa Milanova, George M Church, Lilit Nersisyan
{"title":"hafoe: an interactive tool for the analysis of chimeric AAV libraries after random mutagenesis.","authors":"Tatevik Jalatyan, Erik Aznauryan, Rokib Hasan, Valeri Vardanyan, Stepan Nersisyan, David B Thompson, Noah Davidsohn, Sanya Thomas, Simon van Haren, Jenny Tam, Denitsa Milanova, George M Church, Lilit Nersisyan","doi":"10.1038/s41434-025-00548-3","DOIUrl":"https://doi.org/10.1038/s41434-025-00548-3","url":null,"abstract":"<p><p>Naturally occurring adeno-associated viruses (AAVs) are an integral part of gene therapy, yet engineering novel AAV variants is necessary to expand targetable tissues and treatable diseases. Directed evolution, particularly through DNA shuffling of the capsid genes of wild-type AAV serotypes, is a widely employed strategy to generate novel chimeric variants with desired properties. Yet, the computational analysis of such chimeric sequences presents challenges. We introduce hafoe, a novel computational tool designed for the exploratory analysis of chimeric AAV libraries, which does not require extensive bioinformatics expertise. hafoe accurately deciphers the serotype composition and enrichment patterns of chimeric AAV variants across different tissues. Validation against synthetic datasets demonstrates that hafoe identifies parental serotype compositions with an accuracy of 96.3% to 97.5%. Additionally, we engineered chimeric AAV capsid libraries and screened novel AAV variants for tropism to human dermal fibroblasts and dendritic cells, as well as canine muscle, and liver tissues. Using hafoe we identified and characterized enriched AAV variants in these tissues for potential use in gene therapy and vaccine development. Overall, hafoe can provide valuable insights that may further support the rational design of AAV vectors based on parental serotype and sequence preferences of the capsid genes in target tissues.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144591097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systemically delivered lipid nanoparticle-mRNA encoding lysosomal acid β-glucosidase restores the enzyme deficiency in a murine Gaucher disease model. 系统递送脂质纳米颗粒-编码溶酶体酸β-葡萄糖苷酶的mrna可恢复小鼠戈谢病模型中的酶缺乏。
IF 4.6 3区 医学
Gene Therapy Pub Date : 2025-07-03 DOI: 10.1038/s41434-025-00549-2
Yuanqing Liu, Shasha Wang, Yanni Chen, Zhang Zhang, Xiaojiang Quan, Zhijun Guo, Zihao Wang
{"title":"Systemically delivered lipid nanoparticle-mRNA encoding lysosomal acid β-glucosidase restores the enzyme deficiency in a murine Gaucher disease model.","authors":"Yuanqing Liu, Shasha Wang, Yanni Chen, Zhang Zhang, Xiaojiang Quan, Zhijun Guo, Zihao Wang","doi":"10.1038/s41434-025-00549-2","DOIUrl":"https://doi.org/10.1038/s41434-025-00549-2","url":null,"abstract":"<p><p>Gaucher disease (GD) is a rare genetically inherited illness caused by loss of lysosomal acid β-glucosidase (β-GCase) that leads to progressive accumulation of substrates, sphingolipid glucosylceramide (GL1) and glucosylsphingosine (lyso-GL1). The protein-based enzyme replacement therapy (ERT) requires frequent dosing due to short drug half-life causing challenges in long-term patient compliance. JCXH-301 is a lipid nanoparticle (LNP) encapsulated messenger RNA (mRNA) encoding β-GCase. Intravenous administration of JCXH-301 delivered the target mRNA to various tissues in mice with intracellular expression of β-GCase predominantly in macrophages and dendritic cells in the spleen and bone marrow. In GBA1 D427V homozygous mice treated with JCXH-301, the dose-dependent in vivo production of functional β-GCase resulted in reduction of serum lyso-GL1, a key biomarker of GD. The therapeutic effect of JCXH-301 was sustained for a duration significantly longer than that of protein-based ERT Cerezyme. JCXH-301 administration induced minimal pro-inflammatory cytokines in the liver and spleen. Taken together, these results provide proof-of-concept for using LNP-delivered mRNA as a new drug modality to restore the β-GCase genetic deficiency for GD treatment.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144559972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preclinical evaluation of lentiviral gene therapy for adenosine deaminase 2 deficiency (DADA2): engraftment efficiency and biodistribution in humanised NBSGW mice. 慢病毒基因治疗腺苷脱氨酶2缺乏症(DADA2)的临床前评估:在人源化NBSGW小鼠中的植入效率和生物分布
IF 4.6 3区 医学
Gene Therapy Pub Date : 2025-06-24 DOI: 10.1038/s41434-025-00547-4
Ying Hong, Alice Burleigh, Aiyin Liao, Jenny Yeung, Yixin Bian, Neil Sebire, Olumide Ogunbiyi, Ebun Omoyinmi, Adrian J Thrasher, Emma Morris, Paul A Brogan, Despina Eleftheriou
{"title":"Preclinical evaluation of lentiviral gene therapy for adenosine deaminase 2 deficiency (DADA2): engraftment efficiency and biodistribution in humanised NBSGW mice.","authors":"Ying Hong, Alice Burleigh, Aiyin Liao, Jenny Yeung, Yixin Bian, Neil Sebire, Olumide Ogunbiyi, Ebun Omoyinmi, Adrian J Thrasher, Emma Morris, Paul A Brogan, Despina Eleftheriou","doi":"10.1038/s41434-025-00547-4","DOIUrl":"https://doi.org/10.1038/s41434-025-00547-4","url":null,"abstract":"<p><p>Adenosine deaminase type 2 deficiency (DADA2) is caused by bi-allelic loss-of-function mutations in ADA2. While anti-TNF therapy is effective for the autoinflamatory and vasculitic components of the disease it does not correct marrow failure or immunodeficiency. Allogeneic stem cell transplantation (HSCT) offers a potential cure but is limited by challenges such as graft-versus-host-disease and donor availability. We previously demonstrated that lentiviral-mediated ADA2 gene therapy could restore ADA2 enzyme activity in patient-derived cells, correct macrophage inflammatory activation and reduce endothelial activation in vitro. Here, we evaluated the biodistribution and engraftment potential of lentivirally transduced healthy donor and patient-derived haematopoietic stem cells (HSC) in vivo using a humanised NBSGW mouse model. Transduced healthy HSC retained multilineage differentiation and engraftment capacity, without functional impairment. PCR analysis confirmed the absence of viral integration in non-haematopoietic organs, and histology showed no abnormal tissue changes, underscoring the safety and precision of this approach. In DADA2 patient-derived HSC, ADA2 transduction restored protein expression and enzyme activity, supporting improved cellular function and enhanced engraftment potential. These findings provide a strong foundation for advancing ADA2 gene therapy as a therapeutic strategy for DADA2, bringing it closer to clinical application.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144484128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mixture design as a tool for improving full-to-empty particle ratios across various GOIs in rAAV production. 混合设计是提高rAAV生产中各种goi的满空颗粒比的工具。
IF 4.6 3区 医学
Gene Therapy Pub Date : 2025-06-20 DOI: 10.1038/s41434-025-00546-5
Konstantina Tzimou, Pol Hulsbus-Andreu, Ece Bahar Yildirim, Lars K Nielsen, Jesús Lavado-García
{"title":"Mixture design as a tool for improving full-to-empty particle ratios across various GOIs in rAAV production.","authors":"Konstantina Tzimou, Pol Hulsbus-Andreu, Ece Bahar Yildirim, Lars K Nielsen, Jesús Lavado-García","doi":"10.1038/s41434-025-00546-5","DOIUrl":"10.1038/s41434-025-00546-5","url":null,"abstract":"<p><p>Optimization of recombinant adeno-associated virus (rAAV) production is essential for effective gene therapy applications. However, multiple factors affect the rAAV productivity in mammalian cells, and often they interact with each other, making the optimization process highly challenging. In our previous work, we showed how coupling mixture design (MD) with face-centered central composite design (FCCD) was the most suitable design of experiments (DOE) approach for optimizing rAAV2 productivity and cell viability. In this study, we built on this method and demonstrate that combining MD with FCCD can be used to optimize the percentage of full capsids in rAAV2 upstream preparation. Additionally, we investigate the influence of the gene of interest (GOI) on the optimal conditions for viral particle production and packaging efficiency. By integrating MD and FCCD methodologies, we achieved an improvement of almost 100-fold in Log(Vp) in the case of egfp-expressing rAAV, and a 12-fold increase in bdnf-expressing full rAAV capsids, suggesting that this combined approach is a versatile and effective strategy for optimizing rAAV production processes. These findings emphasize the need for a comprehensive understanding of the factors influencing rAAV production to enhance the efficiency and efficacy of viral vector applications in gene therapy.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144336457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thrombotic microangiopathy following gene therapy for 5q-spinal muscular atrophy. 5q-脊髓性肌萎缩基因治疗后的血栓性微血管病。
IF 4.6 3区 医学
Gene Therapy Pub Date : 2025-06-19 DOI: 10.1038/s41434-025-00545-6
Clara Gontijo Camelo, Rodrigo Holanda Mendonça, Cristiane Araújo Martins Moreno, Juliana Caires Oliveira Achili Ferreira, Adriana Banzzatto Ortega, Vanessa van der Linden, Rejane Souza Macedo Campos, Helio van der Linden, Natalia Spinola Costa da Cunha, Juliana Gurgel-Giannetti, Janaina Monteiro Chaves, Silvana Maria Carvalho Miranda, Andreas Ziegler, Edmar Zanoteli
{"title":"Thrombotic microangiopathy following gene therapy for 5q-spinal muscular atrophy.","authors":"Clara Gontijo Camelo, Rodrigo Holanda Mendonça, Cristiane Araújo Martins Moreno, Juliana Caires Oliveira Achili Ferreira, Adriana Banzzatto Ortega, Vanessa van der Linden, Rejane Souza Macedo Campos, Helio van der Linden, Natalia Spinola Costa da Cunha, Juliana Gurgel-Giannetti, Janaina Monteiro Chaves, Silvana Maria Carvalho Miranda, Andreas Ziegler, Edmar Zanoteli","doi":"10.1038/s41434-025-00545-6","DOIUrl":"10.1038/s41434-025-00545-6","url":null,"abstract":"<p><p>Onasemnogene abeparvovec (OA) is the first gene replacement therapy (GT) approved for 5q spinal muscular atrophy (SMA). While effective, it can cause severe side effects, including thrombotic microangiopathy (TMA). The pathophysiology, risk factors, and management of viral-vector-related TMA remain unclear. This study aimed to evaluate TMA frequency among Brazilian patients treated with OA and characterize their clinical and laboratory profiles. This retrospective, multicenter study analyzed 294 Brazilian patients with 5q SMA treated with OA between October 2020 and September 2024, of whom seven (2.4%) developed TMA. The average age at OA administration was 20.4 months, and the average weight was 11.5 kg. Three patients had documented infections before OA administration. TMA symptoms appeared within 6-10 days post-infusion. All patients showed hemolytic anemia, thrombocytopenia, and at least one organ dysfunction. Treatment included plasmapheresis in two cases and increased corticosteroid doses in four cases. One patient died from TMA complications. Whole exome sequencing in five patients identified no pathogenic variants linked to TMA. TMA is a rare but severe complication of OA therapy for SMA. Prompt recognition and management, often with corticosteroids, are crucial for improving outcomes.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144325237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aptamer-targeted anti-miR RNA construct based on 3WJ as a new approach for the treatment of chronic kidney disease in an experimental model 基于3WJ的适配体靶向抗mir RNA构建作为治疗慢性肾脏疾病的新方法
IF 4.5 3区 医学
Gene Therapy Pub Date : 2025-06-14 DOI: 10.1038/s41434-025-00544-7
Aisha H. A. Alsenousy, Sara A. Sharker, Mennatallah A. Gowayed, Samar S. Elblehi, Maher A. Kamel
{"title":"Aptamer-targeted anti-miR RNA construct based on 3WJ as a new approach for the treatment of chronic kidney disease in an experimental model","authors":"Aisha H. A. Alsenousy,&nbsp;Sara A. Sharker,&nbsp;Mennatallah A. Gowayed,&nbsp;Samar S. Elblehi,&nbsp;Maher A. Kamel","doi":"10.1038/s41434-025-00544-7","DOIUrl":"10.1038/s41434-025-00544-7","url":null,"abstract":"The treatment of chronic disease (CKD) is a great challenge in healthcare that requires an innovative approach to address its complex nature. RNA nanotechnology has emerged rapidly and received attention in the last few years because of its significant aptitude for therapies. Hence, the present study aimed to design, construct, and characterize a multifunctional (anti-miR-34a DNA aptamer-kidney targeted) RNA nanoparticle (RNPs) based on bacteriophage phi29 packaging RNA three-way junction (pRNA-3WJ), and then explore their in vivo toxicity and therapeutic potentials in mice model of CKD. After confirming the safety and specific targeting capability of the prepared core 3WJ (3WJ) and the therapeutic 3WJ (3WJ-Kapt/anti-miR-34a) RNPs to renal tissue using healthy mice, CKD was induced in C57BL/6 mice using adenine. CKD mice were treated with a single intravenous injection of 3WJ or 3WJ-Kapt/anti-miR-34a. Every week, 5 mice of each group were selected randomly for sample collection for 4 weeks post-treatment. The anti-miR-34a 3WJ-RNPs have shown stability, safety, and efficacy in renal targeting using DNA aptamer, by targeting miR-34a in renal tissue, 3WJ-Kapt/anti-miR-34a suppressed profibrotic gene expression and induced anti-fibrotic pathways’ expression. Our present study provides preliminary and pioneering evidence for the promising treatment of renal fibrosis and CKD through targeting miR-34a in the renal tissue by 3WJ-RNPs.","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":"32 4","pages":"359-375"},"PeriodicalIF":4.5,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12310521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144293652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered AAV capsids mediate transduction of murine neurofibroma and sciatic nerve 工程AAV衣壳介导小鼠神经纤维瘤和坐骨神经的转导。
IF 4.5 3区 医学
Gene Therapy Pub Date : 2025-06-10 DOI: 10.1038/s41434-025-00542-9
Edwina Abou Haidar, Shilpa Prabhakar, Pike See Cheah, Killian S. Hanlon, Paula Espinoza, Adam V. Crain, Nikita Patel, Greta W. Radcliff, Ming Cheng, Iván Coto Hernández, Steven Minderler, Demitri de la Cruz, Carrie Ng, Cintia Carla da Hora, Alain Charest, Anat Stemmer-Rachamimov, Nate Jowett, Xandra O. Breakefield, Casey A. Maguire
{"title":"Engineered AAV capsids mediate transduction of murine neurofibroma and sciatic nerve","authors":"Edwina Abou Haidar,&nbsp;Shilpa Prabhakar,&nbsp;Pike See Cheah,&nbsp;Killian S. Hanlon,&nbsp;Paula Espinoza,&nbsp;Adam V. Crain,&nbsp;Nikita Patel,&nbsp;Greta W. Radcliff,&nbsp;Ming Cheng,&nbsp;Iván Coto Hernández,&nbsp;Steven Minderler,&nbsp;Demitri de la Cruz,&nbsp;Carrie Ng,&nbsp;Cintia Carla da Hora,&nbsp;Alain Charest,&nbsp;Anat Stemmer-Rachamimov,&nbsp;Nate Jowett,&nbsp;Xandra O. Breakefield,&nbsp;Casey A. Maguire","doi":"10.1038/s41434-025-00542-9","DOIUrl":"10.1038/s41434-025-00542-9","url":null,"abstract":"Genetic diseases such as Neurofibromatosis type 1 (NF1) and Charcot-Marie Tooth disease involve Schwann cells (SCs) associated with peripheral nerves. Gene therapy using adeno-associated virus (AAV) vector mediated gene delivery is a promising strategy to treat these diseases. However, AAV-mediated transduction of SCs in vivo after intravascular delivery is relatively inefficient, with a lack of extensive characterization of different capsids to date. Here, we performed an in vivo selection with an AAV9 capsid peptide display library in a mouse model of NF1. We chose one capsid variant, AAV-SC3, which was present in NF1 nerves for comparison to two benchmark capsids after systemic injection. AAV-SC3 significantly outperformed one of the two benchmark capsids at levels of transgene mRNA in the neurofibroma. Immunofluorescence microscopy revealed transgene expressing Sox10-positive SCs throughout the neurofibroma with AAV-SC3 injection. Next, we performed a pooled screen with four of the top capsids from our initial selection and AAV9 and identified one capsid, AAV-SC4, with enhanced biodistribution to and transduction of normal sciatic nerve in mice. This capsid displayed a peptide with a known laminin-binding motif, which may provide a conduit for future laminin-targeting strategies. Our results provide a baseline for future AAV-based gene therapies developed for NF1 or other diseases that affect SCs.","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":"32 4","pages":"385-397"},"PeriodicalIF":4.5,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144266087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNAi targeting heparin cofactor II promotes hemostasis in a canine model of acquired hemophilia A 靶向肝素辅助因子II的RNAi促进犬获得性血友病a模型的止血。
IF 4.5 3区 医学
Gene Therapy Pub Date : 2025-05-24 DOI: 10.1038/s41434-025-00541-w
Yuyang Zhang, Tingting Liu, Haiming Kou, Huafang Wang, Yu Hu, Liang V. Tang
{"title":"RNAi targeting heparin cofactor II promotes hemostasis in a canine model of acquired hemophilia A","authors":"Yuyang Zhang,&nbsp;Tingting Liu,&nbsp;Haiming Kou,&nbsp;Huafang Wang,&nbsp;Yu Hu,&nbsp;Liang V. Tang","doi":"10.1038/s41434-025-00541-w","DOIUrl":"10.1038/s41434-025-00541-w","url":null,"abstract":"Heparin cofactor II (HCII) is a critical anticoagulant protein that inactivates thrombin. In our previous mouse studies, we demonstrated that GalNAc-HCII, a small interfering RNA (siRNA) targeting HCII conjugated with N-acetylgalactosamine (GalNAc), exhibited promising therapeutic effects in hemophilia A mouse models. Further evaluation in large animal models, especially with FVIII inhibitors, is essential before GalNAc-HCII can proceed to clinical trials. In this study, we successfully established, for the first time, an acquired hemophilia A canine model by multiple intravenous injections of a rabbit-dog chimeric neutralizing anti-canine FVIII antibody. In the control group, the Beagle dogs exhibited spontaneous bleeding symptoms accompanied by prolonged activated partial thromboplastin time (APTT). After administration, GalNAc-HCII (0.8 and 1.6 mg/kg) demonstrated potent, dose-dependent, and durable HCII inhibitory effects. After 5 days, in normal dogs, GalNAc-HCII reduced HCII levels to 32.67% ± 3.07% and 10.62% ± 1.74% with 0.8 and 1.6 mg/kg GalNAc-HCII, respectively. In hemophilic dogs, GalNAc-HCII treatment significantly improved hemostatic function. Specifically, in the carotid artery thrombosis model, the thrombus formation time was shortened [29.7 ± 2.08 min (0.8 mg/kg) and 18.0 ± 1.0 min (1.6 mg/kg) vs. 40 min (control), P &lt; 0.01]; in the knee joint puncture-induced bleeding model, joint bleeding and synovitis were alleviated; and in the saphenous vein bleeding model, the number of hemostatic events increased. Furthermore, repeated administration of GalNAc-HCII effectively reduced the prolonged APTT. This study demonstrates the efficacy of GalNAc-HCII in hemophilic dogs, suggesting it as a promising novel therapeutic option for patients with hemophilia, including those with FVIII inhibitors.","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":"32 4","pages":"398-409"},"PeriodicalIF":4.5,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144142373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recombinant oncolytic virus NDV-anti-VEGFR2 enhances radiotherapy sensitivity in NSCLC by targeting VEGF signaling and impairing DNA repair. 重组溶瘤病毒ndv -抗vegfr2通过靶向VEGF信号和损伤DNA修复增强NSCLC的放疗敏感性。
IF 4.6 3区 医学
Gene Therapy Pub Date : 2025-05-17 DOI: 10.1038/s41434-025-00540-x
Liang Liu, Liying Song, Tianyan Liu, Kaiyuan Hui, Chenxi Hu, Jiarui Yang, Xuelei Pi, Yuanyuan Yan, Shishi Liu, Yating Zhang, Hongna Chen, Yukai Cao, Lihua Zhou, Yun Qiao, Dan Yu, Chengkai Yin, Xu Li, Chenfeng Zhang, Deshan Li, Zhenzhong Wang, Zhihang Liu, Xiaodong Jiang
{"title":"Recombinant oncolytic virus NDV-anti-VEGFR2 enhances radiotherapy sensitivity in NSCLC by targeting VEGF signaling and impairing DNA repair.","authors":"Liang Liu, Liying Song, Tianyan Liu, Kaiyuan Hui, Chenxi Hu, Jiarui Yang, Xuelei Pi, Yuanyuan Yan, Shishi Liu, Yating Zhang, Hongna Chen, Yukai Cao, Lihua Zhou, Yun Qiao, Dan Yu, Chengkai Yin, Xu Li, Chenfeng Zhang, Deshan Li, Zhenzhong Wang, Zhihang Liu, Xiaodong Jiang","doi":"10.1038/s41434-025-00540-x","DOIUrl":"https://doi.org/10.1038/s41434-025-00540-x","url":null,"abstract":"<p><p>Resistance to radiotherapy is a significant challenge in the clinical management of non-small cell lung cancer (NSCLC). This study investigates a novel multimodal therapeutic strategy that combines oncolytic Newcastle disease virus (NDV) with an anti-VEGFR2 single-chain variable fragment (NDV-anti-VEGFR2) to enhance radiosensitivity in NSCLC. We engineered NDV-anti-VEGFR2 and assessed its efficacy in sensitizing Calu-1 cells to radiation. In vitro results demonstrated that NDV-anti-VEGFR2 significantly inhibited tumor cell proliferation when combined with radiotherapy. In vivo experiments revealed that NDV-anti-VEGFR2, combined with radiation, achieved a tumor growth inhibition rate of 86.48%, surpassing the effects of NDV or radiation alone. Mechanistic investigations indicated that NDV-anti-VEGFR2 mitigated hypoxia by downregulating HIF-1α and impaired DNA repair pathways, as evidenced by reduced levels of RAD51 and γ-H2AX. These findings suggest that NDV-anti-VEGFR2 not only normalizes tumor vasculature but also enhances the cytotoxic effects of radiation by compromising DNA repair mechanisms. Collectively, our results support the clinical potential of NDV-anti-VEGFR2 combined with radiotherapy as a promising strategy to overcome radiotherapy resistance in NSCLC. Future studies in immunocompetent models are warranted to elucidate the immune-mediated effects of this innovative therapeutic approach.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144092958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HDX-MS reveals pH and temperature-responsive regions on AAV capsids and the structural basis for DNA release. HDX-MS揭示了AAV衣壳上的pH和温度响应区域以及DNA释放的结构基础。
IF 4.6 3区 医学
Gene Therapy Pub Date : 2025-05-09 DOI: 10.1038/s41434-025-00539-4
Xiang Ye, Mengqi Hu, Yunli Hu, Haibo Qiu, Ning Li
{"title":"HDX-MS reveals pH and temperature-responsive regions on AAV capsids and the structural basis for DNA release.","authors":"Xiang Ye, Mengqi Hu, Yunli Hu, Haibo Qiu, Ning Li","doi":"10.1038/s41434-025-00539-4","DOIUrl":"https://doi.org/10.1038/s41434-025-00539-4","url":null,"abstract":"<p><p>Recombinant adeno-associated viruses (AAVs) have become increasingly popular as gene therapy vectors in recent years. Like all viruses, AAVs undergo dynamic structural changes in response to varying temperature and pH conditions. However, the specific capsid regions involved in these processes remain unknown. In this study, we employed Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) to investigate the impact of pH and temperature on the structure and conformational dynamics of AAV capsids. Our analysis identified specific regions of the capsid that are sensitive to these environmental changes. Additionally, our data elucidated the structural basis for DNA uncoating or leakage triggered by low pH or high temperature. Detailed structural characterization of AAVs by HDX-MS in this study deepens our understanding of viral capsid conformational dynamics and stability in AAV transduction and manufacturing and storage conditions, paving the way for formulation development and next-generation capsid engineering.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143996243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信