Tatevik Jalatyan, Erik Aznauryan, Rokib Hasan, Valeri Vardanyan, Stepan Nersisyan, David B Thompson, Noah Davidsohn, Sanya Thomas, Simon van Haren, Jenny Tam, Denitsa Milanova, George M Church, Lilit Nersisyan
{"title":"hafoe: an interactive tool for the analysis of chimeric AAV libraries after random mutagenesis.","authors":"Tatevik Jalatyan, Erik Aznauryan, Rokib Hasan, Valeri Vardanyan, Stepan Nersisyan, David B Thompson, Noah Davidsohn, Sanya Thomas, Simon van Haren, Jenny Tam, Denitsa Milanova, George M Church, Lilit Nersisyan","doi":"10.1038/s41434-025-00548-3","DOIUrl":null,"url":null,"abstract":"<p><p>Naturally occurring adeno-associated viruses (AAVs) are an integral part of gene therapy, yet engineering novel AAV variants is necessary to expand targetable tissues and treatable diseases. Directed evolution, particularly through DNA shuffling of the capsid genes of wild-type AAV serotypes, is a widely employed strategy to generate novel chimeric variants with desired properties. Yet, the computational analysis of such chimeric sequences presents challenges. We introduce hafoe, a novel computational tool designed for the exploratory analysis of chimeric AAV libraries, which does not require extensive bioinformatics expertise. hafoe accurately deciphers the serotype composition and enrichment patterns of chimeric AAV variants across different tissues. Validation against synthetic datasets demonstrates that hafoe identifies parental serotype compositions with an accuracy of 96.3% to 97.5%. Additionally, we engineered chimeric AAV capsid libraries and screened novel AAV variants for tropism to human dermal fibroblasts and dendritic cells, as well as canine muscle, and liver tissues. Using hafoe we identified and characterized enriched AAV variants in these tissues for potential use in gene therapy and vaccine development. Overall, hafoe can provide valuable insights that may further support the rational design of AAV vectors based on parental serotype and sequence preferences of the capsid genes in target tissues.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41434-025-00548-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Naturally occurring adeno-associated viruses (AAVs) are an integral part of gene therapy, yet engineering novel AAV variants is necessary to expand targetable tissues and treatable diseases. Directed evolution, particularly through DNA shuffling of the capsid genes of wild-type AAV serotypes, is a widely employed strategy to generate novel chimeric variants with desired properties. Yet, the computational analysis of such chimeric sequences presents challenges. We introduce hafoe, a novel computational tool designed for the exploratory analysis of chimeric AAV libraries, which does not require extensive bioinformatics expertise. hafoe accurately deciphers the serotype composition and enrichment patterns of chimeric AAV variants across different tissues. Validation against synthetic datasets demonstrates that hafoe identifies parental serotype compositions with an accuracy of 96.3% to 97.5%. Additionally, we engineered chimeric AAV capsid libraries and screened novel AAV variants for tropism to human dermal fibroblasts and dendritic cells, as well as canine muscle, and liver tissues. Using hafoe we identified and characterized enriched AAV variants in these tissues for potential use in gene therapy and vaccine development. Overall, hafoe can provide valuable insights that may further support the rational design of AAV vectors based on parental serotype and sequence preferences of the capsid genes in target tissues.
期刊介绍:
Gene Therapy covers both the research and clinical applications of novel therapeutic techniques based on a genetic component. Over the last few decades, significant advances in technologies ranging from identifying novel genetic targets that cause disease through to clinical studies, which show therapeutic benefit, have elevated this multidisciplinary field to the forefront of modern medicine.