Gu Heng Wang, Lei Wang, Lei Sheng, Hua Jian Shan, Wei Gang Zhu, Ya Lan Chen, Ai Dong Deng, Jun Tan, Xiao Zhong Zhou
{"title":"纳米颗粒水凝胶系统递送miR-494-3p通过靶向CXXC4促进肌腱愈合。","authors":"Gu Heng Wang, Lei Wang, Lei Sheng, Hua Jian Shan, Wei Gang Zhu, Ya Lan Chen, Ai Dong Deng, Jun Tan, Xiao Zhong Zhou","doi":"10.1038/s41434-025-00543-8","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the poor healing capacity of tendons, the healing process is slow, with a risk of re-rupture post-injury. In this study, we found that miR-494-3p was one of the miRNAs with significant expression differences after tendon injury by sequencing in the rat Achilles tendon injury model. Therefore, we hypothesized that regulating miR-494-3p expression in tendons could improve tendon healing. Considering the long healing process of the tendons and the short half-life of miRNA, we hope to achieve the best efficacy by delivering miR-494-3p using a sustained-release nanoparticle hydrogel system. In the results, with an increase in miR-494-3p, the tendon biomechanics were significantly improved after 2-week repair, and the content of collagen I (Col I) also increased. Through bioinformatics prediction, double luciferase, and immunohistochemistry experiments, we confirmed that miR-494-3p targeting CXXC finger protein 4 (CXXC4) promoted tendon healing. In conclusion, the miR-494-3p/nanoparticles hydrogel delivery system can protect and sustainedly transfer miR-494-3p into tenocytes, block the translation of CXXC4, increase the expression of Col I, and ultimately improve tendon healing. A nanoparticle hydrogel delivery system of miRNA was constructed and applied to injured tendons. Finally, we confirmed that the miR-494-3p/nanoparticles hydrogel delivery system can protect and sustainedly transfer miR-494-3p into tenocytes, block the translation of CXXC4, increase the expression of Col I, and ultimately improve tendon healing.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoparticle hydrogel system delivery of miR-494-3p to improve tendon healing by targeting CXXC4.\",\"authors\":\"Gu Heng Wang, Lei Wang, Lei Sheng, Hua Jian Shan, Wei Gang Zhu, Ya Lan Chen, Ai Dong Deng, Jun Tan, Xiao Zhong Zhou\",\"doi\":\"10.1038/s41434-025-00543-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to the poor healing capacity of tendons, the healing process is slow, with a risk of re-rupture post-injury. In this study, we found that miR-494-3p was one of the miRNAs with significant expression differences after tendon injury by sequencing in the rat Achilles tendon injury model. Therefore, we hypothesized that regulating miR-494-3p expression in tendons could improve tendon healing. Considering the long healing process of the tendons and the short half-life of miRNA, we hope to achieve the best efficacy by delivering miR-494-3p using a sustained-release nanoparticle hydrogel system. In the results, with an increase in miR-494-3p, the tendon biomechanics were significantly improved after 2-week repair, and the content of collagen I (Col I) also increased. Through bioinformatics prediction, double luciferase, and immunohistochemistry experiments, we confirmed that miR-494-3p targeting CXXC finger protein 4 (CXXC4) promoted tendon healing. In conclusion, the miR-494-3p/nanoparticles hydrogel delivery system can protect and sustainedly transfer miR-494-3p into tenocytes, block the translation of CXXC4, increase the expression of Col I, and ultimately improve tendon healing. A nanoparticle hydrogel delivery system of miRNA was constructed and applied to injured tendons. Finally, we confirmed that the miR-494-3p/nanoparticles hydrogel delivery system can protect and sustainedly transfer miR-494-3p into tenocytes, block the translation of CXXC4, increase the expression of Col I, and ultimately improve tendon healing.</p>\",\"PeriodicalId\":12699,\"journal\":{\"name\":\"Gene Therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41434-025-00543-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41434-025-00543-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Nanoparticle hydrogel system delivery of miR-494-3p to improve tendon healing by targeting CXXC4.
Due to the poor healing capacity of tendons, the healing process is slow, with a risk of re-rupture post-injury. In this study, we found that miR-494-3p was one of the miRNAs with significant expression differences after tendon injury by sequencing in the rat Achilles tendon injury model. Therefore, we hypothesized that regulating miR-494-3p expression in tendons could improve tendon healing. Considering the long healing process of the tendons and the short half-life of miRNA, we hope to achieve the best efficacy by delivering miR-494-3p using a sustained-release nanoparticle hydrogel system. In the results, with an increase in miR-494-3p, the tendon biomechanics were significantly improved after 2-week repair, and the content of collagen I (Col I) also increased. Through bioinformatics prediction, double luciferase, and immunohistochemistry experiments, we confirmed that miR-494-3p targeting CXXC finger protein 4 (CXXC4) promoted tendon healing. In conclusion, the miR-494-3p/nanoparticles hydrogel delivery system can protect and sustainedly transfer miR-494-3p into tenocytes, block the translation of CXXC4, increase the expression of Col I, and ultimately improve tendon healing. A nanoparticle hydrogel delivery system of miRNA was constructed and applied to injured tendons. Finally, we confirmed that the miR-494-3p/nanoparticles hydrogel delivery system can protect and sustainedly transfer miR-494-3p into tenocytes, block the translation of CXXC4, increase the expression of Col I, and ultimately improve tendon healing.
期刊介绍:
Gene Therapy covers both the research and clinical applications of novel therapeutic techniques based on a genetic component. Over the last few decades, significant advances in technologies ranging from identifying novel genetic targets that cause disease through to clinical studies, which show therapeutic benefit, have elevated this multidisciplinary field to the forefront of modern medicine.