Gene TherapyPub Date : 2025-08-11DOI: 10.1038/s41434-025-00560-7
Klaudia Kocsy, Harry Wilkinson, Favour Felix-Ilemhenbhio, Benjamin Bax, Tom Van Agtmael, Mimoun Azzouz, Arshad Majid
{"title":"Gene editing for collagen disorders: current advances and future perspectives.","authors":"Klaudia Kocsy, Harry Wilkinson, Favour Felix-Ilemhenbhio, Benjamin Bax, Tom Van Agtmael, Mimoun Azzouz, Arshad Majid","doi":"10.1038/s41434-025-00560-7","DOIUrl":"10.1038/s41434-025-00560-7","url":null,"abstract":"<p><p>Collagen disorders encompass a wide range of genetic conditions caused by pathogenic variants in collagen genes for which there is an unmet need for treatments. They present various clinical features, ranging from localised tissue abnormalities to severe systemic complications. Symptoms differ significantly and depend on the pathogenic variant, which can affect various systems, including the musculoskeletal, cardiovascular, and respiratory systems, highlighting the complex implications of collagen gene pathogenic variants and the wide range of expression patterns among different collagen types. Gene-editing technologies, particularly Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-Cas systems, have emerged as promising therapeutic options for these disorders, representing a putative one-for-all treatment strategy. This review provides an overview of current gene-editing strategies aimed at collagen-related diseases, including osteogenesis imperfecta, Alport syndrome, and dystrophic epidermolysis bullosa. We explore the application of CRISPR-Cas9, which facilitates targeted DNA modifications, base editing (BE), and prime editing (PE), enabling precise single-nucleotide alterations without double-strand breaks (DSB). Preclinical and clinical studies have shown the potential of gene therapy to enhance collagen production, restore tissue integrity, and alleviate symptoms. However, challenges persist, including the lack of recurring mutations, the need for improved delivery methods, the reduction of off-target effects, and the development of novel therapies. Despite these challenges, advancements in gene editing techniques appear promising in enhancing editing efficiency while minimising unintended mutations, paving the way for more precise and safer genetic interventions for collagen disorders. Gene editing is fundamentally transforming medicine and biotechnology. Its applications encompass advanced diagnostics, tailored therapeutic strategies, and solutions for rare genetic disorders. By enabling precise genetic modifications, gene editing is paving the way for treatments of previously untreatable diseases, including those linked to collagen pathogenic variants. This review discusses the latest advancements in gene therapy techniques targeting collagen-related disorders. It explores innovative approaches like CRISPR-Cas9-mediated gene editing and highlights emerging strategies, such as allele-specific inactivation and base editing (BE). By examining these cutting-edge therapies and their potential clinical applications, this review highlights the transformative impact of gene editing in treating collagen-related conditions, while also identifying critical challenges and future directions for research.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144821202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Visualising treatment effects in low-vision settings: proven and potential endpoints for clinical trials of inherited retinal disease therapies.","authors":"Arun J Thirunavukarasu, Shabnam Raji, Jasmina Cehajic Kapetanovic","doi":"10.1038/s41434-025-00552-7","DOIUrl":"10.1038/s41434-025-00552-7","url":null,"abstract":"<p><p>Inherited retinal diseases are a devasting and incurable cause of blindness which frequently affect patients at a young age, and developing effective treatments has been an important research priority in recent decades. Treatments must be validated in randomised-control trials, which involve measuring benefit according to prospectively defined endpoints. A wide variety of conventional clinical endpoints and emerging anatomical, physiological, and functional biomarkers may be selected. Different options may be better or worse at capturing clinically significant differences and identifying real differences between experimental groups. This review provides an overview of some proven and potential endpoints for randomised-control trials involving inherited retinal disease patients. Clinical endpoints and biomarkers are discussed, and the work required to validate biomarkers for use in trials is outlined. Unlike in general medicine, ophthalmological clinical endpoints may all be conceptualised as surrogates for maintained vision. Selecting optimal endpoints is essential to ensure that treatments are assessed fairly, such that resources are directed towards interventions that stand to truly benefit patients with inherited retinal diseases.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144798892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preclinical safety and biodistribution of SPVN06, a novel gene- and mutation-independent gene therapy for rod-cone dystrophies.","authors":"Mélanie Marie, Lucie Churet, Anne-Sophie Gautron, Rafal Farjo, Kensuke Mizuyoshi, Victoria Stevenson, Hanen Khabou, Thierry Léveillard, José-Alain Sahel, Florence Lorget","doi":"10.1038/s41434-025-00556-3","DOIUrl":"10.1038/s41434-025-00556-3","url":null,"abstract":"<p><p>Rod-cone dystrophies (RCD) are caused by mutations in over 100 genes associated with photoreceptor function, leading to progressive and sequential loss of rod and cone photoreceptors. These mutations generally disrupt retinal metabolism and oxidative stress response accelerating disease progression and vision loss. SPVN06 is an adeno-associated virus (AAV)-based gene- and mutation-agnostic investigational therapy designed to slow cone degeneration by delivering long-term expression of rod-derived cone viability factor (RdCVF) and its full-length isoform, thioredoxin RdCVFL, following a single subretinal administration. These proteins support cone survival by promoting glucose metabolism and reducing oxidative damage, respectively, providing a gene and mutation independent therapeutic approach for RCD. SPVN06 IND-enabling program included pharmacology evaluation in the rd10/rd10 mouse model of RCD (1.0 × 10<sup>8</sup> vector genomes (vg)/eye up to 1 month) along with systemic and ocular safety and biodistribution evaluation in non-human primates (NHPs, 6.0 × 10<sup>9</sup> to 3.0 × 10<sup>11</sup> vg/eye up to 3 months). In the rd10/rd10 mice, SPVN06 showed preserved vision, as assessed by optokinetic tracking. In NHPs, SPVN06 was well-tolerated up to 6.0 × 10<sup>10</sup> vg/eye, with high and stable RdCVF and RdCVFL mRNA expression levels in the retina and retinal pigment epithelium. These results supported the initiation of the ongoing Phase I/II PRODYGY trial with RCD (NCT05748873).</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144784145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gene TherapyPub Date : 2025-08-02DOI: 10.1038/s41434-025-00554-5
Jason Walsh, Joe Palandra, Nicole Duriga, David Beidler, Avery McIntosh, Michael Binks, Hendrik Neubert
{"title":"Dystrophin/mini-dystrophin expression analysis by immunoaffinity liquid chromatography-tandem mass spectrometry after gene therapy for DMD.","authors":"Jason Walsh, Joe Palandra, Nicole Duriga, David Beidler, Avery McIntosh, Michael Binks, Hendrik Neubert","doi":"10.1038/s41434-025-00554-5","DOIUrl":"10.1038/s41434-025-00554-5","url":null,"abstract":"<p><p>Adeno-associated virus (AAV)-based gene replacement therapies in Duchenne muscular dystrophy (DMD) aim to restore dystrophin function via the introduction of micro- or mini-dystrophins. We report dystrophin and mini-dystrophin concentrations generated by immunoaffinity liquid chromatography-tandem mass spectrometry (IA-LC-MS/MS) in skeletal muscle biopsies from ambulatory participants with DMD in a phase 1b study of fordadistrogene movaparvovec, an AAV9-based gene replacement construct. The assay performed robustly for 26 months, as demonstrated by limited variability in calibration standards for peptides LLQV (dystrophin and mini-dystrophin) and LEMP (mini-dystrophin only), quality control samples consisting of spiked mini-dystrophin in DMD skeletal muscle lysate, as well as unspiked, pooled, non-dystrophic skeletal muscle lysate (normal pool). Average values for LLQV in the normal pool tested as part of clinical sample and long-term stability runs were similar to validated values. Biopsy samples showed minor or absent LLQV and absent LEMP signals pre-treatment with fordadistrogene movaparvovec infusion, but signals substantially increased at Days 60 and 360, on average. There was strong concordance in LEMP and LLQV expression change between Days 60 and 360 (R<sup>2</sup> = 0.91; p < 0.001). IA-LC-MS/MS enables reproducible, stable, and reliable quantification of dystrophin/mini-dystrophin following fordadistrogene movaparvovec infusion. ClinicalTrials.gov identifier: NCT03362502.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144768611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gene TherapyPub Date : 2025-07-28DOI: 10.1038/s41434-025-00557-2
Margareta Rybarikova, Maria Rey, Ed Hasanovic, Mélanie Sipion, Lukas Rambousek, Nicole Déglon
{"title":"Gene editing for Spinocerebellar ataxia type 3 taking advantage of the human ATXN3L paralog as replacement gene.","authors":"Margareta Rybarikova, Maria Rey, Ed Hasanovic, Mélanie Sipion, Lukas Rambousek, Nicole Déglon","doi":"10.1038/s41434-025-00557-2","DOIUrl":"10.1038/s41434-025-00557-2","url":null,"abstract":"<p><p>Spinocerebellar ataxia type 3 (SCA3) is a rare neurodegenerative disease caused by a CAG expansion of the ataxin-3 gene (ATXN3). SCA3 patients suffer from ataxia, spasticity and dystonia in mid-adulthood, with spinocerebellar dysfunction and degeneration. As a monogenic disease for which only symptomatic treatment is available, ATXN3 is an attractive target for gene editing. We used the KamiCas9, a self-inactivating gene editing system, to explore gene editing strategies suitable for all SCA3 patients. We first tested the deletion of exon 10 or the introduction of a premature stop codon into exon 9. High editing events were observed in vitro, but efficiency was very low in SCA3 transgenic mice. We then evaluated an ablate-and-replace strategy. The ablate experiments resulted in 55 ± 18% cerebellar editing of the ATXN3 gene. A human ATXN3L paralog, expressed in the brains of SCA3 patients, may act as a natural, CRISPR-resistant replacement gene. In a proof-of-principle study, ablate and ablate-and-replace strategies were evaluated in SCA3 transgenic mice. Two months after injection, similar editing efficiencies were obtained in the ablate and ablate-and-replace groups. Immunofluorescence and RT-qPCR analyses of cerebellar markers support the development of this strategy for SCA3 treatment.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144729853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gene TherapyPub Date : 2025-07-26DOI: 10.1038/s41434-025-00555-4
Theodore Dimitrov, Vikas Munjal, Allison O'Brien, Matthew T Rocco, Ahmad Karkhah, Kaya E Ceyhan, Daniel Prevedello, Lluis Samaranch
{"title":"AAV9-mediated transduction of memory circuits following convection-enhanced delivery into the olfactory bulbs.","authors":"Theodore Dimitrov, Vikas Munjal, Allison O'Brien, Matthew T Rocco, Ahmad Karkhah, Kaya E Ceyhan, Daniel Prevedello, Lluis Samaranch","doi":"10.1038/s41434-025-00555-4","DOIUrl":"10.1038/s41434-025-00555-4","url":null,"abstract":"<p><p>This study explores the potential of adeno-associated virus serotype 9 (AAV9) to deliver therapeutic genes directly into the memory circuit throughout the olfactory bulb (OB), a critical memory and sensory processing region. Using convection-enhanced delivery (CED) of AAV9 encoding green fluorescent protein (GFP), we mapped the extensive neural connectivity from the OB to key memory-related brain regions, including the entorhinal cortex (EC) and hippocampus. Our findings reveal significant transduction of neural pathways and underscore the potential of targeting the OB connectome for therapeutic interventions in progressive neurodegenerative disorders such as Alzheimer's disease or mild cognitive impairment. Targeting the OB connectome will pave the way for new therapeutic strategies to preserve neuronal function and slow the progression, offering a promising avenue beyond symptomatic relief to address the underlying mechanisms of the disease.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.5,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144717822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gene TherapyPub Date : 2025-07-19DOI: 10.1038/s41434-025-00553-6
Dhanya Ravindran, Renuka Rao, Juan Mundisugih, Tracy Titus, Shinya Tsurusaki, Cindy Y Kok, Fairooj N Rashid, Sindhu Igoor, Yasuhito Kotake, Saurabh Kumar, James J H Chong, Ian E Alexander, Leszek Lisowski, Eddy Kizana
{"title":"High-throughput evaluation of cardiac-specific promoters for adeno-associated virus mediated cardiac gene therapy.","authors":"Dhanya Ravindran, Renuka Rao, Juan Mundisugih, Tracy Titus, Shinya Tsurusaki, Cindy Y Kok, Fairooj N Rashid, Sindhu Igoor, Yasuhito Kotake, Saurabh Kumar, James J H Chong, Ian E Alexander, Leszek Lisowski, Eddy Kizana","doi":"10.1038/s41434-025-00553-6","DOIUrl":"https://doi.org/10.1038/s41434-025-00553-6","url":null,"abstract":"<p><p>The selection of an appropriate promoter is important to the design and optimisation of adeno-associated viral (AAV) vector-based cardiac gene therapies. The expression cassette design can impact efficacy and safety of the vector. This study is the first to use a novel AAV barcode-seq method for the simultaneous evaluation of a panel of cardiac-specific promoters in a high-throughput manner. Functional analyses of our cardiac promoter kit packaged in three different capsids were performed using neonatal rat ventricular myocytes (NRVM), human iPSC-derived cardiomyocytes (hiPSC-CMs), HuH7 hepatocellular carcinoma cells, as well as mouse, rat, sheep and pig models. The cardiac troponin T (cTnT) promoter showed the most promise overall as a cardiac-specific promoter across all cardiac models tested. The results validate the barcode-seq technique as a powerful and versatile approach that enables high-throughput, quantitative analysis of various expression cassettes in commonly used models of cardiac gene therapy.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144667552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gene TherapyPub Date : 2025-07-15DOI: 10.1038/s41434-025-00550-9
Saqlain Suleman, Sharmin Alhaque, Andrew Guo, Huairen Zhang, Annette Payne, Marco Zahn, Serena Fawaz, Mohammad S Khalifa, Susan Jobling, David Hay, Matteo Franco, Raffaele Fronza, Wei Wang, Olga Strobel-Freidekind, Annette Deichmann, Yasuhiro Takeuchi, Irene Gil-Farina, Jan Klapwijk, Stefany Perera, Manfred Schmidt, Michael Themis
{"title":"<sup>h</sup>InGeTox: a human-based in vitro platform to evaluate lentivirus/host interactions that contribute to genotoxicity.","authors":"Saqlain Suleman, Sharmin Alhaque, Andrew Guo, Huairen Zhang, Annette Payne, Marco Zahn, Serena Fawaz, Mohammad S Khalifa, Susan Jobling, David Hay, Matteo Franco, Raffaele Fronza, Wei Wang, Olga Strobel-Freidekind, Annette Deichmann, Yasuhiro Takeuchi, Irene Gil-Farina, Jan Klapwijk, Stefany Perera, Manfred Schmidt, Michael Themis","doi":"10.1038/s41434-025-00550-9","DOIUrl":"https://doi.org/10.1038/s41434-025-00550-9","url":null,"abstract":"<p><p>Lentivirus vectors are effective for treatment of genetic disease. However, safety associated with vector related genotoxicity is of concern and currently available models are not reliably predictive of safety in humans. We have developed <sup>h</sup>InGeTox as the first human in vitro platform that uses induced pluripotent stem cells and their hepatocyte like cell derivatives to better understand vector-host interactions that relate vectors to their potential genotoxicity. Using lentiviral vectors carrying the eGFP expression cassette under SFFV promoter activity, that only differ by their LTR and SIN configuration, we characterised vector host interactions potentially implicated in genotoxicity. To do this, lentiviral infected cells were subjected to an array of assays and data from these was used for multi-omics analyses of vector effects on cells at early and late harvest time points. Data on the integration sites of lentiviral vectors in cancer genes and differential expression levels of these genes, showed that both vector configurations are capable of activating cancer genes. Through IS tracking in bulk infected cell populations, we also saw an increase in the viral sequence count in cancer genes present over time which were differentially regulated. RNASeq also showed each vector had potential to generate fusion transcripts with the human genome suggestive of gene splicing or vector mediated readthrough from the internal SFFV promoter. Initially, after infection, both vector configurations were associated with differential expression of genes associated cytokine production, however, after culturing over time there were differences in differential expression in cells infected by each LV. This was marked in particular by the expression of genes involved in the response to DNA damage in cells transduced by the SIN vector, suggesting effects likely to prevent tumour development, in contrast to the expression of genes involved in methylation, characteristic of tumour development, in cells transduced by the LTR vector. Both sets of lentiviral infected cells were also found associated with differential expression of MECOM and LMO2 genes known to be associated with clonal dominance, supporting their potential genotoxicity. Alignment of transcriptomic signatures from iPSC and HLC infected cultures with known cancer gene signatures showed the LTR vector with a higher cancer score than the SIN vector over time in iPSC and also in HLC, which further suggests higher genotoxic potential by the LTR configuration lentivirus. By application of <sup>h</sup>InGeTox to cells infected with LV at the pre-clinical stage of development, we hope that <sup>h</sup>InGeTox can act as a useful pre-clinical tool to identify lentivirus-host interactions that may be considered contributory to genotoxicity to improve safer lentiviral vector design for gene therapy.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144642457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gene TherapyPub Date : 2025-07-11DOI: 10.1038/s41434-025-00551-8
Alessia Di Donfrancesco, Alessia Adelizzi, Anastasia Giri, Roberto Duchi, Simona Boito, Maria Barandalla, Giulia Massaro, Chiara Santanatoglia, Enrica Cappellozza, Andrea Perota, Ivano Di Meo, Valeria Tiranti, Emanuela Bottani, Cesare Galli, Nicola Persico, Dario Brunetti
{"title":"Transabdominal ultrasound guided AAV9-GFP delivery in fetal pigs: a translational and minimally invasive model for in utero fetal gene therapy.","authors":"Alessia Di Donfrancesco, Alessia Adelizzi, Anastasia Giri, Roberto Duchi, Simona Boito, Maria Barandalla, Giulia Massaro, Chiara Santanatoglia, Enrica Cappellozza, Andrea Perota, Ivano Di Meo, Valeria Tiranti, Emanuela Bottani, Cesare Galli, Nicola Persico, Dario Brunetti","doi":"10.1038/s41434-025-00551-8","DOIUrl":"https://doi.org/10.1038/s41434-025-00551-8","url":null,"abstract":"<p><p>In utero fetal gene therapy (IUFGT) has the potential to correct severe monogenic disorders before irreversible damage occurs. Despite promising results in small and large animal models, its translation to clinical practice remains limited by technical challenges, safety concerns, and the lack of standardized protocols in relevant disease models species. We established and validated a minimally invasive, ultrasound-guided approach for systemic gene delivery in fetal pigs using a self-complementary AAV9 vector encoding GFP under a CAG promoter. Injections were performed at different gestational ages (GA 80 and GA 108) via intracardiac or umbilical venous routes. Postnatal outcomes were monitored, and transgene biodistribution and expression were assessed by qPCR, ddPCR, immunofluorescence, and Western blotting. Inflammatory response, toxicity, and maternal safety were evaluated through cytokine profiling and histological analyses. The procedure was well tolerated, with no significant maternal morbidity or adverse obstetric outcomes beyond one preterm delivery. Biodistribution analysis revealed widespread vector presence in peripheral tissues, with robust GFP expression in liver and heart. Importantly, there was no evidence of significant tissue toxicity, necrosis, or fibrosis in any of the organs analyzed. Mild increases in pro-inflammatory cytokines (GM-CSF, GRO-α, IFN-γ) were observed but were not associated with histopathological changes. No anti-AAV9 capsid antibodies were detected in sera from piglets or sows, suggesting a minimal immune response to the vector. These findings demonstrate the safety, feasibility, and efficacy of ultrasound-guided IUFGT in pigs, supporting its potential as a translational platform for therapeutic gene delivery in fetuses affected by severe congenital diseases. This model offers a valuable framework for further preclinical development of prenatal interventions, particularly for disorders with early onset, such as mitochondrial diseases.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144608219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gene TherapyPub Date : 2025-07-09DOI: 10.1038/s41434-025-00543-8
Gu Heng Wang, Lei Wang, Lei Sheng, Hua Jian Shan, Wei Gang Zhu, Ya Lan Chen, Ai Dong Deng, Jun Tan, Xiao Zhong Zhou
{"title":"Nanoparticle hydrogel system delivery of miR-494-3p to improve tendon healing by targeting CXXC4.","authors":"Gu Heng Wang, Lei Wang, Lei Sheng, Hua Jian Shan, Wei Gang Zhu, Ya Lan Chen, Ai Dong Deng, Jun Tan, Xiao Zhong Zhou","doi":"10.1038/s41434-025-00543-8","DOIUrl":"10.1038/s41434-025-00543-8","url":null,"abstract":"<p><p>Due to the poor healing capacity of tendons, the healing process is slow, with a risk of re-rupture post-injury. In this study, we found that miR-494-3p was one of the miRNAs with significant expression differences after tendon injury by sequencing in the rat Achilles tendon injury model. Therefore, we hypothesized that regulating miR-494-3p expression in tendons could improve tendon healing. Considering the long healing process of the tendons and the short half-life of miRNA, we hope to achieve the best efficacy by delivering miR-494-3p using a sustained-release nanoparticle hydrogel system. In the results, with an increase in miR-494-3p, the tendon biomechanics were significantly improved after 2-week repair, and the content of collagen I (Col I) also increased. Through bioinformatics prediction, double luciferase, and immunohistochemistry experiments, we confirmed that miR-494-3p targeting CXXC finger protein 4 (CXXC4) promoted tendon healing. In conclusion, the miR-494-3p/nanoparticles hydrogel delivery system can protect and sustainedly transfer miR-494-3p into tenocytes, block the translation of CXXC4, increase the expression of Col I, and ultimately improve tendon healing. A nanoparticle hydrogel delivery system of miRNA was constructed and applied to injured tendons. Finally, we confirmed that the miR-494-3p/nanoparticles hydrogel delivery system can protect and sustainedly transfer miR-494-3p into tenocytes, block the translation of CXXC4, increase the expression of Col I, and ultimately improve tendon healing.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144591098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}