Margareta Rybarikova, Maria Rey, Ed Hasanovic, Mélanie Sipion, Lukas Rambousek, Nicole Déglon
{"title":"Gene editing for Spinocerebellar ataxia type 3 taking advantage of the human ATXN3L paralog as replacement gene.","authors":"Margareta Rybarikova, Maria Rey, Ed Hasanovic, Mélanie Sipion, Lukas Rambousek, Nicole Déglon","doi":"10.1038/s41434-025-00557-2","DOIUrl":null,"url":null,"abstract":"<p><p>Spinocerebellar ataxia type 3 (SCA3) is a rare neurodegenerative disease caused by a CAG expansion of the ataxin-3 gene (ATXN3). SCA3 patients suffer from ataxia, spasticity and dystonia in mid-adulthood, with spinocerebellar dysfunction and degeneration. As a monogenic disease for which only symptomatic treatment is available, ATXN3 is an attractive target for gene editing. We used the KamiCas9, a self-inactivating gene editing system, to explore gene editing strategies suitable for all SCA3 patients. We first tested the deletion of exon 10 or the introduction of a premature stop codon into exon 9. High editing events were observed in vitro, but efficiency was very low in SCA3 transgenic mice. We then evaluated an ablate-and-replace strategy. The ablate experiments resulted in 55 ± 18% cerebellar editing of the ATXN3 gene. A human ATXN3L paralog, expressed in the brains of SCA3 patients, may act as a natural, CRISPR-resistant replacement gene. In a proof-of-principle study, ablate and ablate-and-replace strategies were evaluated in SCA3 transgenic mice. Two months after injection, similar editing efficiencies were obtained in the ablate and ablate-and-replace groups. Immunofluorescence and RT-qPCR analyses of cerebellar markers support the development of this strategy for SCA3 treatment.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41434-025-00557-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a rare neurodegenerative disease caused by a CAG expansion of the ataxin-3 gene (ATXN3). SCA3 patients suffer from ataxia, spasticity and dystonia in mid-adulthood, with spinocerebellar dysfunction and degeneration. As a monogenic disease for which only symptomatic treatment is available, ATXN3 is an attractive target for gene editing. We used the KamiCas9, a self-inactivating gene editing system, to explore gene editing strategies suitable for all SCA3 patients. We first tested the deletion of exon 10 or the introduction of a premature stop codon into exon 9. High editing events were observed in vitro, but efficiency was very low in SCA3 transgenic mice. We then evaluated an ablate-and-replace strategy. The ablate experiments resulted in 55 ± 18% cerebellar editing of the ATXN3 gene. A human ATXN3L paralog, expressed in the brains of SCA3 patients, may act as a natural, CRISPR-resistant replacement gene. In a proof-of-principle study, ablate and ablate-and-replace strategies were evaluated in SCA3 transgenic mice. Two months after injection, similar editing efficiencies were obtained in the ablate and ablate-and-replace groups. Immunofluorescence and RT-qPCR analyses of cerebellar markers support the development of this strategy for SCA3 treatment.
期刊介绍:
Gene Therapy covers both the research and clinical applications of novel therapeutic techniques based on a genetic component. Over the last few decades, significant advances in technologies ranging from identifying novel genetic targets that cause disease through to clinical studies, which show therapeutic benefit, have elevated this multidisciplinary field to the forefront of modern medicine.