Klaudia Kocsy, Harry Wilkinson, Favour Felix-Ilemhenbhio, Benjamin Bax, Tom Van Agtmael, Mimoun Azzouz, Arshad Majid
{"title":"胶原蛋白疾病的基因编辑:当前进展和未来展望。","authors":"Klaudia Kocsy, Harry Wilkinson, Favour Felix-Ilemhenbhio, Benjamin Bax, Tom Van Agtmael, Mimoun Azzouz, Arshad Majid","doi":"10.1038/s41434-025-00560-7","DOIUrl":null,"url":null,"abstract":"<p><p>Collagen disorders encompass a wide range of genetic conditions caused by pathogenic variants in collagen genes for which there is an unmet need for treatments. They present various clinical features, ranging from localised tissue abnormalities to severe systemic complications. Symptoms differ significantly and depend on the pathogenic variant, which can affect various systems, including the musculoskeletal, cardiovascular, and respiratory systems, highlighting the complex implications of collagen gene pathogenic variants and the wide range of expression patterns among different collagen types. Gene-editing technologies, particularly Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-Cas systems, have emerged as promising therapeutic options for these disorders, representing a putative one-for-all treatment strategy. This review provides an overview of current gene-editing strategies aimed at collagen-related diseases, including osteogenesis imperfecta, Alport syndrome, and dystrophic epidermolysis bullosa. We explore the application of CRISPR-Cas9, which facilitates targeted DNA modifications, base editing (BE), and prime editing (PE), enabling precise single-nucleotide alterations without double-strand breaks (DSB). Preclinical and clinical studies have shown the potential of gene therapy to enhance collagen production, restore tissue integrity, and alleviate symptoms. However, challenges persist, including the lack of recurring mutations, the need for improved delivery methods, the reduction of off-target effects, and the development of novel therapies. Despite these challenges, advancements in gene editing techniques appear promising in enhancing editing efficiency while minimising unintended mutations, paving the way for more precise and safer genetic interventions for collagen disorders. Gene editing is fundamentally transforming medicine and biotechnology. Its applications encompass advanced diagnostics, tailored therapeutic strategies, and solutions for rare genetic disorders. By enabling precise genetic modifications, gene editing is paving the way for treatments of previously untreatable diseases, including those linked to collagen pathogenic variants. This review discusses the latest advancements in gene therapy techniques targeting collagen-related disorders. It explores innovative approaches like CRISPR-Cas9-mediated gene editing and highlights emerging strategies, such as allele-specific inactivation and base editing (BE). By examining these cutting-edge therapies and their potential clinical applications, this review highlights the transformative impact of gene editing in treating collagen-related conditions, while also identifying critical challenges and future directions for research.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene editing for collagen disorders: current advances and future perspectives.\",\"authors\":\"Klaudia Kocsy, Harry Wilkinson, Favour Felix-Ilemhenbhio, Benjamin Bax, Tom Van Agtmael, Mimoun Azzouz, Arshad Majid\",\"doi\":\"10.1038/s41434-025-00560-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Collagen disorders encompass a wide range of genetic conditions caused by pathogenic variants in collagen genes for which there is an unmet need for treatments. They present various clinical features, ranging from localised tissue abnormalities to severe systemic complications. Symptoms differ significantly and depend on the pathogenic variant, which can affect various systems, including the musculoskeletal, cardiovascular, and respiratory systems, highlighting the complex implications of collagen gene pathogenic variants and the wide range of expression patterns among different collagen types. Gene-editing technologies, particularly Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-Cas systems, have emerged as promising therapeutic options for these disorders, representing a putative one-for-all treatment strategy. This review provides an overview of current gene-editing strategies aimed at collagen-related diseases, including osteogenesis imperfecta, Alport syndrome, and dystrophic epidermolysis bullosa. We explore the application of CRISPR-Cas9, which facilitates targeted DNA modifications, base editing (BE), and prime editing (PE), enabling precise single-nucleotide alterations without double-strand breaks (DSB). Preclinical and clinical studies have shown the potential of gene therapy to enhance collagen production, restore tissue integrity, and alleviate symptoms. However, challenges persist, including the lack of recurring mutations, the need for improved delivery methods, the reduction of off-target effects, and the development of novel therapies. Despite these challenges, advancements in gene editing techniques appear promising in enhancing editing efficiency while minimising unintended mutations, paving the way for more precise and safer genetic interventions for collagen disorders. Gene editing is fundamentally transforming medicine and biotechnology. Its applications encompass advanced diagnostics, tailored therapeutic strategies, and solutions for rare genetic disorders. By enabling precise genetic modifications, gene editing is paving the way for treatments of previously untreatable diseases, including those linked to collagen pathogenic variants. This review discusses the latest advancements in gene therapy techniques targeting collagen-related disorders. It explores innovative approaches like CRISPR-Cas9-mediated gene editing and highlights emerging strategies, such as allele-specific inactivation and base editing (BE). By examining these cutting-edge therapies and their potential clinical applications, this review highlights the transformative impact of gene editing in treating collagen-related conditions, while also identifying critical challenges and future directions for research.</p>\",\"PeriodicalId\":12699,\"journal\":{\"name\":\"Gene Therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41434-025-00560-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41434-025-00560-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Gene editing for collagen disorders: current advances and future perspectives.
Collagen disorders encompass a wide range of genetic conditions caused by pathogenic variants in collagen genes for which there is an unmet need for treatments. They present various clinical features, ranging from localised tissue abnormalities to severe systemic complications. Symptoms differ significantly and depend on the pathogenic variant, which can affect various systems, including the musculoskeletal, cardiovascular, and respiratory systems, highlighting the complex implications of collagen gene pathogenic variants and the wide range of expression patterns among different collagen types. Gene-editing technologies, particularly Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-Cas systems, have emerged as promising therapeutic options for these disorders, representing a putative one-for-all treatment strategy. This review provides an overview of current gene-editing strategies aimed at collagen-related diseases, including osteogenesis imperfecta, Alport syndrome, and dystrophic epidermolysis bullosa. We explore the application of CRISPR-Cas9, which facilitates targeted DNA modifications, base editing (BE), and prime editing (PE), enabling precise single-nucleotide alterations without double-strand breaks (DSB). Preclinical and clinical studies have shown the potential of gene therapy to enhance collagen production, restore tissue integrity, and alleviate symptoms. However, challenges persist, including the lack of recurring mutations, the need for improved delivery methods, the reduction of off-target effects, and the development of novel therapies. Despite these challenges, advancements in gene editing techniques appear promising in enhancing editing efficiency while minimising unintended mutations, paving the way for more precise and safer genetic interventions for collagen disorders. Gene editing is fundamentally transforming medicine and biotechnology. Its applications encompass advanced diagnostics, tailored therapeutic strategies, and solutions for rare genetic disorders. By enabling precise genetic modifications, gene editing is paving the way for treatments of previously untreatable diseases, including those linked to collagen pathogenic variants. This review discusses the latest advancements in gene therapy techniques targeting collagen-related disorders. It explores innovative approaches like CRISPR-Cas9-mediated gene editing and highlights emerging strategies, such as allele-specific inactivation and base editing (BE). By examining these cutting-edge therapies and their potential clinical applications, this review highlights the transformative impact of gene editing in treating collagen-related conditions, while also identifying critical challenges and future directions for research.
期刊介绍:
Gene Therapy covers both the research and clinical applications of novel therapeutic techniques based on a genetic component. Over the last few decades, significant advances in technologies ranging from identifying novel genetic targets that cause disease through to clinical studies, which show therapeutic benefit, have elevated this multidisciplinary field to the forefront of modern medicine.