Edwina Abou Haidar, Shilpa Prabhakar, Pike See Cheah, Killian S. Hanlon, Paula Espinoza, Adam V. Crain, Nikita Patel, Greta W. Radcliff, Ming Cheng, Iván Coto Hernández, Steven Minderler, Demitri de la Cruz, Carrie Ng, Cintia Carla da Hora, Alain Charest, Anat Stemmer-Rachamimov, Nate Jowett, Xandra O. Breakefield, Casey A. Maguire
{"title":"工程AAV衣壳介导小鼠神经纤维瘤和坐骨神经的转导。","authors":"Edwina Abou Haidar, Shilpa Prabhakar, Pike See Cheah, Killian S. Hanlon, Paula Espinoza, Adam V. Crain, Nikita Patel, Greta W. Radcliff, Ming Cheng, Iván Coto Hernández, Steven Minderler, Demitri de la Cruz, Carrie Ng, Cintia Carla da Hora, Alain Charest, Anat Stemmer-Rachamimov, Nate Jowett, Xandra O. Breakefield, Casey A. Maguire","doi":"10.1038/s41434-025-00542-9","DOIUrl":null,"url":null,"abstract":"Genetic diseases such as Neurofibromatosis type 1 (NF1) and Charcot-Marie Tooth disease involve Schwann cells (SCs) associated with peripheral nerves. Gene therapy using adeno-associated virus (AAV) vector mediated gene delivery is a promising strategy to treat these diseases. However, AAV-mediated transduction of SCs in vivo after intravascular delivery is relatively inefficient, with a lack of extensive characterization of different capsids to date. Here, we performed an in vivo selection with an AAV9 capsid peptide display library in a mouse model of NF1. We chose one capsid variant, AAV-SC3, which was present in NF1 nerves for comparison to two benchmark capsids after systemic injection. AAV-SC3 significantly outperformed one of the two benchmark capsids at levels of transgene mRNA in the neurofibroma. Immunofluorescence microscopy revealed transgene expressing Sox10-positive SCs throughout the neurofibroma with AAV-SC3 injection. Next, we performed a pooled screen with four of the top capsids from our initial selection and AAV9 and identified one capsid, AAV-SC4, with enhanced biodistribution to and transduction of normal sciatic nerve in mice. This capsid displayed a peptide with a known laminin-binding motif, which may provide a conduit for future laminin-targeting strategies. Our results provide a baseline for future AAV-based gene therapies developed for NF1 or other diseases that affect SCs.","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":"32 4","pages":"385-397"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineered AAV capsids mediate transduction of murine neurofibroma and sciatic nerve\",\"authors\":\"Edwina Abou Haidar, Shilpa Prabhakar, Pike See Cheah, Killian S. Hanlon, Paula Espinoza, Adam V. Crain, Nikita Patel, Greta W. Radcliff, Ming Cheng, Iván Coto Hernández, Steven Minderler, Demitri de la Cruz, Carrie Ng, Cintia Carla da Hora, Alain Charest, Anat Stemmer-Rachamimov, Nate Jowett, Xandra O. Breakefield, Casey A. Maguire\",\"doi\":\"10.1038/s41434-025-00542-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic diseases such as Neurofibromatosis type 1 (NF1) and Charcot-Marie Tooth disease involve Schwann cells (SCs) associated with peripheral nerves. Gene therapy using adeno-associated virus (AAV) vector mediated gene delivery is a promising strategy to treat these diseases. However, AAV-mediated transduction of SCs in vivo after intravascular delivery is relatively inefficient, with a lack of extensive characterization of different capsids to date. Here, we performed an in vivo selection with an AAV9 capsid peptide display library in a mouse model of NF1. We chose one capsid variant, AAV-SC3, which was present in NF1 nerves for comparison to two benchmark capsids after systemic injection. AAV-SC3 significantly outperformed one of the two benchmark capsids at levels of transgene mRNA in the neurofibroma. Immunofluorescence microscopy revealed transgene expressing Sox10-positive SCs throughout the neurofibroma with AAV-SC3 injection. Next, we performed a pooled screen with four of the top capsids from our initial selection and AAV9 and identified one capsid, AAV-SC4, with enhanced biodistribution to and transduction of normal sciatic nerve in mice. This capsid displayed a peptide with a known laminin-binding motif, which may provide a conduit for future laminin-targeting strategies. Our results provide a baseline for future AAV-based gene therapies developed for NF1 or other diseases that affect SCs.\",\"PeriodicalId\":12699,\"journal\":{\"name\":\"Gene Therapy\",\"volume\":\"32 4\",\"pages\":\"385-397\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41434-025-00542-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Therapy","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41434-025-00542-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Engineered AAV capsids mediate transduction of murine neurofibroma and sciatic nerve
Genetic diseases such as Neurofibromatosis type 1 (NF1) and Charcot-Marie Tooth disease involve Schwann cells (SCs) associated with peripheral nerves. Gene therapy using adeno-associated virus (AAV) vector mediated gene delivery is a promising strategy to treat these diseases. However, AAV-mediated transduction of SCs in vivo after intravascular delivery is relatively inefficient, with a lack of extensive characterization of different capsids to date. Here, we performed an in vivo selection with an AAV9 capsid peptide display library in a mouse model of NF1. We chose one capsid variant, AAV-SC3, which was present in NF1 nerves for comparison to two benchmark capsids after systemic injection. AAV-SC3 significantly outperformed one of the two benchmark capsids at levels of transgene mRNA in the neurofibroma. Immunofluorescence microscopy revealed transgene expressing Sox10-positive SCs throughout the neurofibroma with AAV-SC3 injection. Next, we performed a pooled screen with four of the top capsids from our initial selection and AAV9 and identified one capsid, AAV-SC4, with enhanced biodistribution to and transduction of normal sciatic nerve in mice. This capsid displayed a peptide with a known laminin-binding motif, which may provide a conduit for future laminin-targeting strategies. Our results provide a baseline for future AAV-based gene therapies developed for NF1 or other diseases that affect SCs.
期刊介绍:
Gene Therapy covers both the research and clinical applications of novel therapeutic techniques based on a genetic component. Over the last few decades, significant advances in technologies ranging from identifying novel genetic targets that cause disease through to clinical studies, which show therapeutic benefit, have elevated this multidisciplinary field to the forefront of modern medicine.