Genome Biology最新文献

筛选
英文 中文
scStateDynamics: deciphering the drug-responsive tumor cell state dynamics by modeling single-cell level expression changes scStateDynamics:通过模拟单细胞水平的表达变化,解读药物反应性肿瘤细胞的状态动态
IF 12.3 1区 生物学
Genome Biology Pub Date : 2024-11-21 DOI: 10.1186/s13059-024-03436-y
Wenbo Guo, Xinqi Li, Dongfang Wang, Nan Yan, Qifan Hu, Fan Yang, Xuegong Zhang, Jianhua Yao, Jin Gu
{"title":"scStateDynamics: deciphering the drug-responsive tumor cell state dynamics by modeling single-cell level expression changes","authors":"Wenbo Guo, Xinqi Li, Dongfang Wang, Nan Yan, Qifan Hu, Fan Yang, Xuegong Zhang, Jianhua Yao, Jin Gu","doi":"10.1186/s13059-024-03436-y","DOIUrl":"https://doi.org/10.1186/s13059-024-03436-y","url":null,"abstract":"Understanding tumor cell heterogeneity and plasticity is crucial for overcoming drug resistance. Single-cell technologies enable analyzing cell states at a given condition, but catenating static cell snapshots to characterize dynamic drug responses remains challenging. Here, we propose scStateDynamics, an algorithm to infer tumor cell state dynamics and identify common drug effects by modeling single-cell level gene expression changes. Its reliability is validated on both simulated and lineage tracing data. Application to real tumor drug treatment datasets identifies more subtle cell subclusters with different drug responses beyond static transcriptome similarity and disentangles drug action mechanisms from the cell-level expression changes.\u0000","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"19 1","pages":""},"PeriodicalIF":12.3,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Considerations in the search for epistasis 寻找外显子的注意事项
IF 12.3 1区 生物学
Genome Biology Pub Date : 2024-11-19 DOI: 10.1186/s13059-024-03427-z
Marleen Balvert, Johnathan Cooper-Knock, Julian Stamp, Ross P. Byrne, Soufiane Mourragui, Juami van Gils, Stefania Benonisdottir, Johannes Schlüter, Kevin Kenna, Sanne Abeln, Alfredo Iacoangeli, Joséphine T. Daub, Brian L. Browning, Gizem Taş, Jiajing Hu, Yan Wang, Elham Alhathli, Calum Harvey, Luna Pianesi, Sara C. Schulte, Jorge González-Domínguez, Erik Garrisson, Michael P. Snyder, Alexander Schönhuth, Letitia M. F. Sng, Natalie A. Twine
{"title":"Considerations in the search for epistasis","authors":"Marleen Balvert, Johnathan Cooper-Knock, Julian Stamp, Ross P. Byrne, Soufiane Mourragui, Juami van Gils, Stefania Benonisdottir, Johannes Schlüter, Kevin Kenna, Sanne Abeln, Alfredo Iacoangeli, Joséphine T. Daub, Brian L. Browning, Gizem Taş, Jiajing Hu, Yan Wang, Elham Alhathli, Calum Harvey, Luna Pianesi, Sara C. Schulte, Jorge González-Domínguez, Erik Garrisson, Michael P. Snyder, Alexander Schönhuth, Letitia M. F. Sng, Natalie A. Twine","doi":"10.1186/s13059-024-03427-z","DOIUrl":"https://doi.org/10.1186/s13059-024-03427-z","url":null,"abstract":"Epistasis refers to changes in the effect on phenotype of a unit of genetic information, such as a single nucleotide polymorphism or a gene, dependent on the context of other genetic units. Such interactions are both biologically plausible and good candidates to explain observations which are not fully explained by an additive heritability model. However, the search for epistasis has so far largely failed to recover this missing heritability. We identify key challenges and propose that future works need to leverage idealized systems, known biology and even previously identified epistatic interactions, in order to guide the search for new interactions.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"11 1","pages":""},"PeriodicalIF":12.3,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcription of a centromere-enriched retroelement and local retention of its RNA are significant features of the CENP-A chromatin landscape. 中心粒富集的逆转录因子的转录及其 RNA 的局部保留是 CENP-A 染色质景观的重要特征。
IF 10.1 1区 生物学
Genome Biology Pub Date : 2024-11-18 DOI: 10.1186/s13059-024-03433-1
B J Chabot, R Sun, A Amjad, S J Hoyt, L Ouyang, C Courret, R Drennan, L Leo, A M Larracuente, L J Core, R J O'Neill, B G Mellone
{"title":"Transcription of a centromere-enriched retroelement and local retention of its RNA are significant features of the CENP-A chromatin landscape.","authors":"B J Chabot, R Sun, A Amjad, S J Hoyt, L Ouyang, C Courret, R Drennan, L Leo, A M Larracuente, L J Core, R J O'Neill, B G Mellone","doi":"10.1186/s13059-024-03433-1","DOIUrl":"10.1186/s13059-024-03433-1","url":null,"abstract":"<p><strong>Background: </strong>Centromeres depend on chromatin containing the conserved histone H3 variant CENP-A for function and inheritance, while the role of centromeric DNA repeats remains unclear. Retroelements are prevalent at centromeres across taxa and represent a potential mechanism for promoting transcription to aid in CENP-A incorporation or for generating RNA transcripts to maintain centromere integrity.</p><p><strong>Results: </strong>In this study, we probe into the transcription and RNA localization of the centromere-enriched retroelement G2/Jockey-3 (hereafter referred to as Jockey-3) in Drosophila melanogaster, currently the only in vivo model with assembled centromeres. We find that Jockey-3 is a major component of the centromeric transcriptome and produces RNAs that localize to centromeres in metaphase. Leveraging the polymorphism of Jockey-3 and a de novo centromere system, we show that these RNAs remain associated with their cognate DNA sequences in cis, suggesting they are unlikely to perform a sequence-specific function at all centromeres. We show that Jockey-3 transcription is positively correlated with the presence of CENP-A and that recent Jockey-3 transposition events have occurred preferentially at CENP-A-containing chromatin.</p><p><strong>Conclusions: </strong>We propose that Jockey-3 preferentially inserts at the centromere to ensure its own selfish propagation, while contributing to transcription across these regions. Given the conservation of retroelements as centromere components through evolution, our findings may offer a basis for understanding similar associations in other species.</p>","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"25 1","pages":"295"},"PeriodicalIF":10.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575011/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VI-VS: calibrated identification of feature dependencies in single-cell multiomics VI-VS:校准识别单细胞多组学中的特征依赖性
IF 12.3 1区 生物学
Genome Biology Pub Date : 2024-11-15 DOI: 10.1186/s13059-024-03419-z
Pierre Boyeau, Stephen Bates, Can Ergen, Michael I. Jordan, Nir Yosef
{"title":"VI-VS: calibrated identification of feature dependencies in single-cell multiomics","authors":"Pierre Boyeau, Stephen Bates, Can Ergen, Michael I. Jordan, Nir Yosef","doi":"10.1186/s13059-024-03419-z","DOIUrl":"https://doi.org/10.1186/s13059-024-03419-z","url":null,"abstract":"Unveiling functional relationships between various molecular cell phenotypes from data using machine learning models is a key promise of multiomics. Existing methods either use flexible but hard-to-interpret models or simpler, misspecified models. VI-VS (Variational Inference for Variable Selection) balances flexibility and interpretability to identify relevant feature relationships in multiomic data. It uses deep generative models to identify conditionally dependent features, with false discovery rate control. VI-VS is available as an open-source Python package, providing a robust solution to identify features more likely representing genuine causal relationships.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"11 1","pages":""},"PeriodicalIF":12.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IAMSAM: image-based analysis of molecular signatures using the Segment Anything Model IAMSAM:基于图像的分子特征分析,使用分段 Anything 模型
IF 12.3 1区 生物学
Genome Biology Pub Date : 2024-11-11 DOI: 10.1186/s13059-024-03380-x
Dongjoo Lee, Jeongbin Park, Seungho Cook, Seongjin Yoo, Daeseung Lee, Hongyoon Choi
{"title":"IAMSAM: image-based analysis of molecular signatures using the Segment Anything Model","authors":"Dongjoo Lee, Jeongbin Park, Seungho Cook, Seongjin Yoo, Daeseung Lee, Hongyoon Choi","doi":"10.1186/s13059-024-03380-x","DOIUrl":"https://doi.org/10.1186/s13059-024-03380-x","url":null,"abstract":"Spatial transcriptomics is a cutting-edge technique that combines gene expression with spatial information, allowing researchers to study molecular patterns within tissue architecture. Here, we present IAMSAM, a user-friendly web-based tool for analyzing spatial transcriptomics data focusing on morphological features. IAMSAM accurately segments tissue images using the Segment Anything Model, allowing for the semi-automatic selection of regions of interest based on morphological signatures. Furthermore, IAMSAM provides downstream analysis, such as identifying differentially expressed genes, enrichment analysis, and cell type prediction within the selected regions. With its simple interface, IAMSAM empowers researchers to explore and interpret heterogeneous tissues in a streamlined manner.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"409 1","pages":""},"PeriodicalIF":12.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adenine base editors induce off-target structure variations in mouse embryos and primary human T cells 腺嘌呤碱基编辑器在小鼠胚胎和原代人类 T 细胞中诱发脱靶结构变异
IF 12.3 1区 生物学
Genome Biology Pub Date : 2024-11-11 DOI: 10.1186/s13059-024-03434-0
Leilei Wu, Shutan Jiang, Meisong Shi, Tanglong Yuan, Yaqin Li, Pinzheng Huang, Yingqi Li, Erwei Zuo, Changyang Zhou, Yidi Sun
{"title":"Adenine base editors induce off-target structure variations in mouse embryos and primary human T cells","authors":"Leilei Wu, Shutan Jiang, Meisong Shi, Tanglong Yuan, Yaqin Li, Pinzheng Huang, Yingqi Li, Erwei Zuo, Changyang Zhou, Yidi Sun","doi":"10.1186/s13059-024-03434-0","DOIUrl":"https://doi.org/10.1186/s13059-024-03434-0","url":null,"abstract":"The safety of CRISPR-based gene editing methods is of the utmost priority in clinical applications. Previous studies have reported that Cas9 cleavage induced frequent aneuploidy in primary human T cells, but whether cleavage-mediated editing of base editors would generate off-target structure variations remains unknown. Here, we investigate the potential off-target structural variations associated with CRISPR/Cas9, ABE, and CBE editing in mouse embryos and primary human T cells by whole-genome sequencing and single-cell RNA-seq analyses. The results show that both Cas9 and ABE generate off-target structural variations (SVs) in mouse embryos, while CBE induces rare SVs. In addition, off-target large deletions are detected in 32.74% of primary human T cells transfected with Cas9 and 9.17% of cells transfected with ABE. Moreover, Cas9-induced aneuploid cells activate the P53 and apoptosis pathways, whereas ABE-associated aneuploid cells significantly upregulate cell cycle-related genes and are arrested in the G0 phase. A percentage of 16.59% and 4.29% aneuploid cells are still observable at 3 weeks post transfection of Cas9 or ABE. These off-target phenomena in ABE are universal as observed in other cell types such as B cells and Huh7. Furthermore, the off-target SVs are significantly reduced in cells treated with high-fidelity ABE (ABE-V106W). This study shows both CRISPR/Cas9 and ABE induce off-target SVs in mouse embryos and primary human T cells, raising an urgent need for the development of high-fidelity gene editing tools.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"2 1","pages":""},"PeriodicalIF":12.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SpottedPy quantifies relationships between spatial transcriptomic hotspots and uncovers environmental cues of epithelial-mesenchymal plasticity in breast cancer SpottedPy 量化空间转录组热点之间的关系,揭示乳腺癌上皮-间质可塑性的环境线索
IF 12.3 1区 生物学
Genome Biology Pub Date : 2024-11-11 DOI: 10.1186/s13059-024-03428-y
Eloise Withnell, Maria Secrier
{"title":"SpottedPy quantifies relationships between spatial transcriptomic hotspots and uncovers environmental cues of epithelial-mesenchymal plasticity in breast cancer","authors":"Eloise Withnell, Maria Secrier","doi":"10.1186/s13059-024-03428-y","DOIUrl":"https://doi.org/10.1186/s13059-024-03428-y","url":null,"abstract":"Spatial transcriptomics is revolutionizing the exploration of intratissue heterogeneity in cancer, yet capturing cellular niches and their spatial relationships remains challenging. We introduce SpottedPy, a Python package designed to identify tumor hotspots and map spatial interactions within the cancer ecosystem. Using SpottedPy, we examine epithelial-mesenchymal plasticity in breast cancer and highlight stable niches associated with angiogenic and hypoxic regions, shielded by CAFs and macrophages. Hybrid and mesenchymal hotspot distribution follows transformation gradients reflecting progressive immunosuppression. Our method offers flexibility to explore spatial relationships at different scales, from immediate neighbors to broader tissue modules, providing new insights into tumor microenvironment dynamics.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"71 1","pages":""},"PeriodicalIF":12.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
scDOT: optimal transport for mapping senescent cells in spatial transcriptomics scDOT:空间转录组学中绘制衰老细胞图谱的最佳传输方式
IF 12.3 1区 生物学
Genome Biology Pub Date : 2024-11-08 DOI: 10.1186/s13059-024-03426-0
Nam D. Nguyen, Lorena Rosas, Timur Khaliullin, Peiran Jiang, Euxhen Hasanaj, Jose A. Ovando-Ricardez, Marta Bueno, Irfan Rahman, Gloria S. Pryhuber, Dongmei Li, Qin Ma, Toren Finkel, Melanie Königshoff, Oliver Eickelberg, Mauricio Rojas, Ana L. Mora, Jose Lugo-Martinez, Ziv Bar-Joseph
{"title":"scDOT: optimal transport for mapping senescent cells in spatial transcriptomics","authors":"Nam D. Nguyen, Lorena Rosas, Timur Khaliullin, Peiran Jiang, Euxhen Hasanaj, Jose A. Ovando-Ricardez, Marta Bueno, Irfan Rahman, Gloria S. Pryhuber, Dongmei Li, Qin Ma, Toren Finkel, Melanie Königshoff, Oliver Eickelberg, Mauricio Rojas, Ana L. Mora, Jose Lugo-Martinez, Ziv Bar-Joseph","doi":"10.1186/s13059-024-03426-0","DOIUrl":"https://doi.org/10.1186/s13059-024-03426-0","url":null,"abstract":"The low resolution of spatial transcriptomics data necessitates additional information for optimal use. We developed scDOT, which combines spatial transcriptomics and single cell RNA sequencing to improve the ability to reconstruct single cell resolved spatial maps and identify senescent cells. scDOT integrates optimal transport and expression deconvolution to learn non-linear couplings between cells and spots and to infer cell placements. Application of scDOT to lung spatial transcriptomics data improves on prior methods and allows the identification of the spatial organization of senescent cells, their neighboring cells and novel genes involved in cell-cell interactions that may be driving senescence.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"10 1","pages":""},"PeriodicalIF":12.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GraphPCA: a fast and interpretable dimension reduction algorithm for spatial transcriptomics data GraphPCA:用于空间转录组学数据的快速、可解释的降维算法
IF 12.3 1区 生物学
Genome Biology Pub Date : 2024-11-07 DOI: 10.1186/s13059-024-03429-x
Jiyuan Yang, Lu Wang, Lin Liu, Xiaoqi Zheng
{"title":"GraphPCA: a fast and interpretable dimension reduction algorithm for spatial transcriptomics data","authors":"Jiyuan Yang, Lu Wang, Lin Liu, Xiaoqi Zheng","doi":"10.1186/s13059-024-03429-x","DOIUrl":"https://doi.org/10.1186/s13059-024-03429-x","url":null,"abstract":"The rapid advancement of spatial transcriptomics technologies has revolutionized our understanding of cell heterogeneity and intricate spatial structures within tissues and organs. However, the high dimensionality and noise in spatial transcriptomic data present significant challenges for downstream data analyses. Here, we develop GraphPCA, an interpretable and quasi-linear dimension reduction algorithm that leverages the strengths of graphical regularization and principal component analysis. Comprehensive evaluations on simulated and multi-resolution spatial transcriptomic datasets generated from various platforms demonstrate the capacity of GraphPCA to enhance downstream analysis tasks including spatial domain detection, denoising, and trajectory inference compared to other state-of-the-art methods.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"3 1","pages":""},"PeriodicalIF":12.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CaClust: linking genotype to transcriptional heterogeneity of follicular lymphoma using BCR and exomic variants CaClust:利用 BCR 和外显子变异将滤泡淋巴瘤的基因型与转录异质性联系起来
IF 12.3 1区 生物学
Genome Biology Pub Date : 2024-11-05 DOI: 10.1186/s13059-024-03417-1
Kazimierz Oksza-Orzechowski, Edwin Quinten, Shadi Shafighi, Szymon M. Kiełbasa, Hugo W. van Kessel, Ruben A. L. de Groen, Joost S. P. Vermaat, Julieta H. Sepúlveda Yáñez, Marcelo A. Navarrete, Hendrik Veelken, Cornelis A. M. van Bergen, Ewa Szczurek
{"title":"CaClust: linking genotype to transcriptional heterogeneity of follicular lymphoma using BCR and exomic variants","authors":"Kazimierz Oksza-Orzechowski, Edwin Quinten, Shadi Shafighi, Szymon M. Kiełbasa, Hugo W. van Kessel, Ruben A. L. de Groen, Joost S. P. Vermaat, Julieta H. Sepúlveda Yáñez, Marcelo A. Navarrete, Hendrik Veelken, Cornelis A. M. van Bergen, Ewa Szczurek","doi":"10.1186/s13059-024-03417-1","DOIUrl":"https://doi.org/10.1186/s13059-024-03417-1","url":null,"abstract":"Tumours exhibit high genotypic and transcriptional heterogeneity. Both affect cancer progression and treatment, but have been predominantly studied separately in follicular lymphoma. To comprehensively investigate the evolution and genotype-to-phenotype maps in follicular lymphoma, we introduce CaClust, a probabilistic graphical model integrating deep whole exome, single-cell RNA and B-cell receptor sequencing data to infer clone genotypes, cell-to-clone mapping, and single-cell genotyping. CaClust outperforms a state-of-the-art model on simulated and patient data. In-depth analyses of single cells from four samples showcase effects of driver mutations, follicular lymphoma evolution, possible therapeutic targets, and single-cell genotyping that agrees with an independent targeted resequencing experiment.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"35 1","pages":""},"PeriodicalIF":12.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信