{"title":"Fueling chromosomal gene diversification and artificial evolution with CRISPR","authors":"Ruiying Zhu, Chuanhong Ren, Zehua Bao","doi":"10.1186/s13059-025-03756-7","DOIUrl":null,"url":null,"abstract":"Gene diversification is an effective approach to massively dissecting variant functions and evolving sequences when paired with an appropriate assay. In vitro mutagenesis and ectopic gene expression, however, fail to simulate the endogenous regulatory environment of the variants. The development of clustered, regularly interspaced short palindromic repeats (CRISPR) systems has greatly boosted the efficiency of targeted gene diversification in various species. Here, we review recent CRISPR-assisted methods for chromosomal gene diversification and artificial evolution, focusing on the advantages and limitations of each approach, and propose possible strategies to overcome current limitations and directions in future technology development.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"39 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03756-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gene diversification is an effective approach to massively dissecting variant functions and evolving sequences when paired with an appropriate assay. In vitro mutagenesis and ectopic gene expression, however, fail to simulate the endogenous regulatory environment of the variants. The development of clustered, regularly interspaced short palindromic repeats (CRISPR) systems has greatly boosted the efficiency of targeted gene diversification in various species. Here, we review recent CRISPR-assisted methods for chromosomal gene diversification and artificial evolution, focusing on the advantages and limitations of each approach, and propose possible strategies to overcome current limitations and directions in future technology development.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.