Angewandte Chemie International Edition最新文献

筛选
英文 中文
Optimizing s‐p Orbital Overlap between Sodium Polysulfides and Single‐Atom Indium Catalyst for Efficient Sulfur Redox Reaction 优化多硫化钠与单原子铟催化剂之间的 s-p 轨道重叠,实现高效的硫氧化还原反应
IF 16.6 1区 化学
Angewandte Chemie International Edition Pub Date : 2024-12-16 DOI: 10.1002/anie.202422208
Guangxuan Wu, Tongfeng Liu, Zhoujie Lao, Yihao Cheng, Tianshuai Wang, Jing Mao, Haichang Zhang, Enzuo Liu, Chunsheng Shi, Guangmin Zhou, Chunnian He, Wenbin Hu, Naiqin Zhao, Ningning Wu, Biao Chen
{"title":"Optimizing s‐p Orbital Overlap between Sodium Polysulfides and Single‐Atom Indium Catalyst for Efficient Sulfur Redox Reaction","authors":"Guangxuan Wu, Tongfeng Liu, Zhoujie Lao, Yihao Cheng, Tianshuai Wang, Jing Mao, Haichang Zhang, Enzuo Liu, Chunsheng Shi, Guangmin Zhou, Chunnian He, Wenbin Hu, Naiqin Zhao, Ningning Wu, Biao Chen","doi":"10.1002/anie.202422208","DOIUrl":"https://doi.org/10.1002/anie.202422208","url":null,"abstract":"P‐block metal carbon‐supported single‐atom catalysts (C‐SACs) have emerged as a promising candidate for high‐performance room‐temperature sodium‐sulfur (RT Na‐S) batteries, due to their high atom utilization and unique electronic structure. However, the ambiguous electronic‐level understanding of Na‐dominant s‐p hybridization between sodium polysulfides (NaPSs) and p‐block C‐SACs limits the precise control of coordination environment tuning and electro‐catalytic activity manipulation. Here, s‐p orbital overlap degree (OOD) between the s orbitals of Na in NaPSs and the p orbitals of p‐block C‐SACs is proposed as a descriptor for sulfur reduction reaction (SRR) and sulfur oxidation reaction (SOR). Compared to NG and NG‐supported InN4 (NG‐InN4) SACs, the nitrogen‐doped graphene‐supported InN5 (NG‐InN5) SACs show the largest s‐p OOD, demonstrating the weakest shuttle effect and the lowest reaction energy barriers in both SRR and SOR. Accordingly, the designed catalysts allow the Na‐S pouch batteries to retain a high capacity of 490.7 mAh g‐1 at 2 A g‐1 with a Coulombic efficiency of 96% at a low electrolyte/sulfur (E/S) ratio of 4.5 μl. This work offers an s‐p orbital overlap descriptor describing the interaction between NaPSs and p‐orbital‐dominated catalysts for high‐performance RT Na‐S batteries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"23 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrodriven ATP Synthesis via Integration of a Reconstructed Thylakoid Membrane 通过整合重建的类囊体膜进行电驱动 ATP 合成
IF 16.6 1区 化学
Angewandte Chemie International Edition Pub Date : 2024-12-16 DOI: 10.1002/anie.202421120
Lijing Chang, Huijuan Cui, Weisong Liu, Yi-Heng P. Job Zhang, Lingling Zhang
{"title":"Electrodriven ATP Synthesis via Integration of a Reconstructed Thylakoid Membrane","authors":"Lijing Chang, Huijuan Cui, Weisong Liu, Yi-Heng P. Job Zhang, Lingling Zhang","doi":"10.1002/anie.202421120","DOIUrl":"https://doi.org/10.1002/anie.202421120","url":null,"abstract":"Nature produces ATP, the energy currency, by converting solar energy (photophosphorylation) and chemical energy (substrate‐level phosphorylation and oxidative phosphorylation). Green electricity, as a significant and sustainable energy carrier, plays a crucial role in achieving a carbon‐neutral society. In this work, we established and verified a novel electrodriven phosphorylation method. Spinach thylakoid membranes (TMs), enriched with ATPases, were isolated and constructed into planar TMs (pTMs) on a proton exchange membrane (PEM), effectively imparting the traditional PEM with the biological function of ATP regeneration. Following the optimization of TMs concentration and incubation time, the biological PEM was integrated into a two‐compartment electrochemical cell, where ATP was successfully synthesized by ATPase of pTMs, triggered by the proton gradient potential generated during electrochemical water splitting. When a constant voltage of 3 V was applied to the electrochemical cells, ATP was synthesized at a rate of 3.16 μM min‐1μgChl‐1, approximately twice the rate of ΔpH‐driven ATP synthesis. This design offers substantial potential for green energy applications in in vitro biotransformation (ivBT) systems.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"36 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High‐Entropy Electrolytes with High Disordered Solvation Structures for Ultra‐Stable Zinc Metal Anodes
IF 16.6 1区 化学
Angewandte Chemie International Edition Pub Date : 2024-12-16 DOI: 10.1002/anie.202422395
Haoran Wang, Shenzhen Deng, Shuai Wang, Wulong Li, Shixing Yuan, Jing Han, Hongyan Fu, Bingang Xu, Lei Wei
{"title":"High‐Entropy Electrolytes with High Disordered Solvation Structures for Ultra‐Stable Zinc Metal Anodes","authors":"Haoran Wang, Shenzhen Deng, Shuai Wang, Wulong Li, Shixing Yuan, Jing Han, Hongyan Fu, Bingang Xu, Lei Wei","doi":"10.1002/anie.202422395","DOIUrl":"https://doi.org/10.1002/anie.202422395","url":null,"abstract":"Aqueous zinc‐ion batteries (ZIBs) are playing an increasingly important role in the field of energy storage. However, their practical applications are handicapped by severe dendrite formation and side reactions on zinc anodes. Herein, a low‐concentration high‐entropy (HE) electrolyte strategy is proposed to achieve high reversibility and ultra‐durable zinc metal anode. Specifically, this HE electrolyte features multiple anions participating in coordination and highly disordered solvation shells, which would disrupt intrinsic H‐bond network between water molecules and suppress interfacial side reactions. Moreover, these diversified weakly solvated structures can lower solvation energy of Zn2+ solvation configurations and enhance zinc ion diffusion kinetics, promoting uniform Zn deposition and electrode interface stability. Consequently, Zn||Zn symmetric cells exhibit over 2,000 hours of cycling stability, and Zn||Cu asymmetric cells achieve high average Coulombic efficiency of 99.9% over 500 cycles. Furthermore, the Zn||PANI full cell with optimized HE‐50mM electrolyte delivers a high specific capacity of 110.7 mAh g‐1 over 2,000 cycles at 0.5 A g‐1 and a capacity retention of 70.4% at 15 A g‐1 after 10,000 cycles. Remarkably, even at a low temperature of ‐20 °C, the Zn||PANI full cells equipped with HE‐50mM electrolyte still demonstrate long‐term cycling stability over 600 cycles with high‐capacity retention of 93.5%.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"250 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulating Crystalline Phase/Plane of Polymer Electrolyte for Rapid Lithium Ion Transfer 调节聚合物电解质的晶相/晶面以实现锂离子的快速转移
IF 16.6 1区 化学
Angewandte Chemie International Edition Pub Date : 2024-12-16 DOI: 10.1002/anie.202420698
Su Wang, Chen Li, Yue Ma, Hongzhou Zhang, Xixi Shi, Lianqi Zhang, Dawei Song
{"title":"Regulating Crystalline Phase/Plane of Polymer Electrolyte for Rapid Lithium Ion Transfer","authors":"Su Wang, Chen Li, Yue Ma, Hongzhou Zhang, Xixi Shi, Lianqi Zhang, Dawei Song","doi":"10.1002/anie.202420698","DOIUrl":"https://doi.org/10.1002/anie.202420698","url":null,"abstract":"Electronic-rich functional groups and flexible segments have long been perceived to be the decisive factors influencing lithium-ion transfer in polymer electrolytes, while crystallinity is regarded as the great scourge. Actually, the research on the influence of crystalline phase and crystalline plane is still in scarcity. Herein, taking poly(vinylidene fluoride)-hexafluoropropylene (PVDF-HFP) as an example, new (111/201) crystal planes (belonged to β-phase) are regulated by dissolving process and clarified by Synchrotron radiation X-ray diffraction and X-ray diffraction. Density functional theory calculation indicates that the newly exposed (111/201) crystal planes provide higher binding energy with lithium ions and are conducive to provide more ion transport channels.7Li nuclear magnetic resonance of new crystalline planes contained PVDF-HFP based electrolyte shows lower field and sharper peak intensity, further proves the rapid lithium ion transfer. Therefore, a high ionic conductivity of 6.42×10−4 S cm−1 and a large lithium-ion transfer number of 0.7 are achieved. This study offers a new insight into the influence of crystalline phase and crystalline plane on the transfer of lithium ion for polymer electrolytes.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"60 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Electrochemiluminescence by Knocking Out Gold Active Sites
IF 16.6 1区 化学
Angewandte Chemie International Edition Pub Date : 2024-12-16 DOI: 10.1002/anie.202421185
Neso Sojic, Indhu Leka Kottaiveedu Sivakumar, Laurent Bouffier, Shanmugam Senthil Kumar
{"title":"Enhanced Electrochemiluminescence by Knocking Out Gold Active Sites","authors":"Neso Sojic, Indhu Leka Kottaiveedu Sivakumar, Laurent Bouffier, Shanmugam Senthil Kumar","doi":"10.1002/anie.202421185","DOIUrl":"https://doi.org/10.1002/anie.202421185","url":null,"abstract":"Electrochemiluminescence (ECL) of the conventional system of [Ru(bpy)3]2+ luminophore and amine-based coreactants is particularly inefficient on noble metal electrodes. This is due to the formation of a passivating oxide layer on the metal surface inhibiting the electro-oxidation of amines like tri-n-propylamine (TPrA) coreactant, Herein, we demonstrated the enhancement of ECL emission on gold surface by hydroxyl radicals attack that are chemically generated with Cu-Fenton reagent. These radicals selectively deactivate the gold active sites and knockout the metal surface asperities that counterintuitively led to an amplification of the ECL emission. Atomic Force Microscopy shows a massive smoothening of the surface. The electrochemical characterization proves that the involved ECL reaction mechanism switches from direct oxidation to catalytic route, where the kinetics of indirect TPrA oxidation is facilitated on deactivated gold surface. Besides, in situ smoothening of a rough electrode in presence of tandem [Ru(bpy)3]2+/TPrA, the ECL enhancement enables Cu2+ sensing with good reliability and limit of detection. Such atomically smoothened and corrosion-resistant gold surface readily tuned the ECL reactivity and opened new directions on influence of topography and reactivity on ECL mechanisms, thus will be extremely useful for the future development of ECL imaging strategies and highly sensitive ECL sensors.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"41 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrahigh Proton Selectivity by Assembled Cationic Covalent Organic Framework Nanosheets
IF 16.6 1区 化学
Angewandte Chemie International Edition Pub Date : 2024-12-16 DOI: 10.1002/anie.202419034
Xin Liu, Weibin Lin, Khozama Bader Al Mohawes, Niveen M. Khashab
{"title":"Ultrahigh Proton Selectivity by Assembled Cationic Covalent Organic Framework Nanosheets","authors":"Xin Liu, Weibin Lin, Khozama Bader Al Mohawes, Niveen M. Khashab","doi":"10.1002/anie.202419034","DOIUrl":"https://doi.org/10.1002/anie.202419034","url":null,"abstract":"Ionic covalent organic framework (COF) nanosheets are becoming increasingly attractive as promising two‐dimensional (2D) materials for proton transport due to their ionic functionality and tailor‐made pores. However, most synthetic methods for nanosheets rely on surface‐assisted methods or phase transformation often yielding nanosheets with low aspect ratios. In this study, we present a bottom‐up approach utilizing an oil‐oil‐water triphase system to achieve the large‐scale synthesis of ionic COF nanosheets. The intermediate oil layer in this system modulates the diffusion rate of monomers from the top oil phase into the aqueous phase, enabling in‐plane anisotropic secondary growth from the initial discrete fibrous structure into large and crystalline COF nanosheets. The ionic COF nanosheets exhibit excellent proton permeability while simultaneously excluding other cations by casting into crack‐free membranes, demonstrating efficient HCl extraction from acidic water waste. This strategy for larger‐scale COF nanosheet growth will offer an alternative platform for designing multifunctional COF membranes with applications in sophisticated separation technologies.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"6 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting the Performance of Iridium Single Atom Catalyst in a Porous Organic Polymer for Glycerol Conversion to Lactic Acid
IF 16.6 1区 化学
Angewandte Chemie International Edition Pub Date : 2024-12-16 DOI: 10.1002/anie.202419607
Kuo-Wei Huang, Yadagiri Rachuri, Sandeep Suryabhan Gholap, Amol M. Hengne, Mohammad Misbahur Rahman, Indranil Dutta, Mohamed Ben Hassine, Shibo Xi
{"title":"Boosting the Performance of Iridium Single Atom Catalyst in a Porous Organic Polymer for Glycerol Conversion to Lactic Acid","authors":"Kuo-Wei Huang, Yadagiri Rachuri, Sandeep Suryabhan Gholap, Amol M. Hengne, Mohammad Misbahur Rahman, Indranil Dutta, Mohamed Ben Hassine, Shibo Xi","doi":"10.1002/anie.202419607","DOIUrl":"https://doi.org/10.1002/anie.202419607","url":null,"abstract":"Single-atom catalysts (SACs) inherit the merit of both homogeneous and heterogeneous systems with atomically dispersed mononuclear metal centers on the solid supports. Herein, we developed an Ir-SAC catalyst via the polymerization of an active homogeneous 2-picolinylhydrazone ligand-based iridium (Ir) metal complex. Such catalysts provide great stabilization against migration and agglomeration due to the strong covalent C-C bond linkage of active complexes and the polymer matrix. This Ir-SAC catalyst shows excellent selectivity towards glycerol to lactic acid conversion with a remarkable recyclability to offer an unprecedentedly high TON of over 104 million under optimized conditions.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"4 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic Incorporation of a Thioxanthone‐Containing Amino Acid for the Design of Artificial Photoenzymes
IF 16.6 1区 化学
Angewandte Chemie International Edition Pub Date : 2024-12-16 DOI: 10.1002/anie.202419022
Kai-Yue Chen, Hui Ming, He-Xiang Wang, Hua-Qi Wang, Zheng Xiang
{"title":"Genetic Incorporation of a Thioxanthone‐Containing Amino Acid for the Design of Artificial Photoenzymes","authors":"Kai-Yue Chen, Hui Ming, He-Xiang Wang, Hua-Qi Wang, Zheng Xiang","doi":"10.1002/anie.202419022","DOIUrl":"https://doi.org/10.1002/anie.202419022","url":null,"abstract":"Genetically encodable photosensitizers allows for the design of artificial photoenzymes to expand the scope of abiological reactions. Here, we report the genetic incorporation of a thioxanthone‐containing amino acid into a protein scaffold using an engineered pyrrolysyl‐tRNA/pyrrolysyl‐tRNA synthetase pair. The designer enzyme was engineered to catalyze a dearomative [2 + 2] cycloaddition reaction in high yields (up to > 99% yield) with excellent enantioselectivity (up to 98:2 e.r.). This work provides a robust and facile method for photoenzyme design and lays the foundation for the development of photoenzymatic reactions.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"1 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fragment Discovery by X‐ray Crystallographic Screening Targeting the CTP Binding Site of Pseudomonas aeruginosa IspD
IF 16.6 1区 化学
Angewandte Chemie International Edition Pub Date : 2024-12-16 DOI: 10.1002/anie.202414615
Daan Willocx, Lucia D’Auria, Danica Walsh, Hugo Scherer, Alaa Alhayek, Mostafa M. Hamed, Franck Borel, Eleonora Diamanti, Anna Katharina Herta Hirsch
{"title":"Fragment Discovery by X‐ray Crystallographic Screening Targeting the CTP Binding Site of Pseudomonas aeruginosa IspD","authors":"Daan Willocx, Lucia D’Auria, Danica Walsh, Hugo Scherer, Alaa Alhayek, Mostafa M. Hamed, Franck Borel, Eleonora Diamanti, Anna Katharina Herta Hirsch","doi":"10.1002/anie.202414615","DOIUrl":"https://doi.org/10.1002/anie.202414615","url":null,"abstract":"With antimicrobial resistance (AMR) reaching alarming levels, new anti‐infectives with unpreceded mechanisms of action are urgently needed. The 2‐C‐methylerythritol‐D‐erythritol‐4‐phosphate (MEP) pathway represents an attractive source of drug targets due to its essential role in numerous pathogenic Gram‐negative bacteria and Mycobacterium tuberculosis (Mt), whilst being absent in human cells. Here, we solved the first crystal structure of Pseudomonas aeruginosa (Pa) IspD, the third enzyme in the MEP pathway and present the discovery of a fragment‐based compound class identified through crystallographic screening of PaIspD. The initial fragment occupies the CTP binding cavity within the active site. Confirmation of fragment–protein interactions was achieved through 1H saturation–transfer difference nuclear magnetic resonance (1H‐STD‐NMR). Building upon these findings and insights from the co‐crystal structures, we identified two growth vectors for fragment growing. We synthesized derivatives addressing both growth vectors, which showed improved affinities for PaIspD. Our new fragment class targets PaIspD, displays promising affinity and favorable growth vectors for further optimization.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"30 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoupling H2 and O2 Release in Particulate Photocatalytic Overall Water Splitting Using a Reversible O2 Binder
IF 16.6 1区 化学
Angewandte Chemie International Edition Pub Date : 2024-12-16 DOI: 10.1002/anie.202420913
Dan Liu, Huihui Xu, Jinni Shen, Xun Wang, Chengwei Qu, Huaxiang Lin, Jinlin Long, Ying Wang, Wenxin Dai, Yuanxing Fang, Yanhui Yang, Xuxu Wang, Xianzhi Fu, Zizhong Zhang
{"title":"Decoupling H2 and O2 Release in Particulate Photocatalytic Overall Water Splitting Using a Reversible O2 Binder","authors":"Dan Liu, Huihui Xu, Jinni Shen, Xun Wang, Chengwei Qu, Huaxiang Lin, Jinlin Long, Ying Wang, Wenxin Dai, Yuanxing Fang, Yanhui Yang, Xuxu Wang, Xianzhi Fu, Zizhong Zhang","doi":"10.1002/anie.202420913","DOIUrl":"https://doi.org/10.1002/anie.202420913","url":null,"abstract":"H2 and O2 evolutions occur simultaneously for conventional particulate photocatalytic overall water splitting (PPOWS), leading to a significant backward reaction and the formation of an explosive H2/O2 gas mixture. This is an issue that must be addressed prior to industrialization of PPOWS. Here, a convenient, cost‐effective, and scalable concept is introduced to uncouple hydrogen and oxygen production for PPOWS. Based on this idea, a three‐component photocatalyst, Co(5%)‐HPCN/(rGO/Pt), is constructed, consisting of a photoresponsive chip (HPCN), a H2 evolution cocatalyst (rGO/Pt), and a cobalt complex capable of reversibly binding O2 (Co), to achieve the decoupling of PPOWS under alternating UV and visible light irradiations. The asynchronous O2 and H2 evolution strategy have considerable flexibility regarding the photocatalyst structure and light sources suitable for PPOWS.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"38 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信