分子设计驱动的界面工程实现钙钛矿太阳能电池缺陷钝化和增强孔提取。

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wei Jia,Riming Sun,Jingyuan Qiao,Guangchao Shi,Qiangqiang Zhao,Ziyan Gong,Siming Zheng,Ruida Xu,Jingzhi Shang,Lin Song,Kai Wang,Wei Huang,Ruihao Chen,Yiyun Fang,Hongqiang Wang,Zi-Qiang Rong
{"title":"分子设计驱动的界面工程实现钙钛矿太阳能电池缺陷钝化和增强孔提取。","authors":"Wei Jia,Riming Sun,Jingyuan Qiao,Guangchao Shi,Qiangqiang Zhao,Ziyan Gong,Siming Zheng,Ruida Xu,Jingzhi Shang,Lin Song,Kai Wang,Wei Huang,Ruihao Chen,Yiyun Fang,Hongqiang Wang,Zi-Qiang Rong","doi":"10.1002/anie.202513869","DOIUrl":null,"url":null,"abstract":"Interface engineering has emerged as an effective strategy to address interface defects and energy level misalignment between the perovskite and hole transport layer (HTL). Herein, three novel multifunctional hole interface molecules with distinct substituents were designed to passivate defects at the perovskite/HTL interface. These molecules integrate hole-transporting groups with passivating units, enabling effective defect passivation, improved energy level alignment, and facilitating efficient carrier extraction. Among the three hole transport interface molecules (HTIMs), the 3-(3,6-bis(4-(bis(4-(methylthio)phenyl)amino)phenyl)-9H-carbazol-9-yl)hexan-1-amine hydroiodide (MeS-TPA-Cbz-HAI), comprising -MeS and HAI units, exhibited superior interface passivation capability and greater chemical compatibility with 2,2',7,7'-Tetrakis (N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD), leading to a reduction in defect density and enhanced hole transport. Consequently, the device based on MeS-TPA-Cbz-HAI achieved a notable power conversion efficiency (PCE) of 25.83%. Moreover, the unencapsulated device maintained 94% of its initial efficiency after 1000 hours of continuous operation under ambient conditions (30%-65% relative humidity), demonstrating remarkable long-term stability. This design strategy for hole interface molecules presents a promising avenue for achieving both high efficiency and operational stability in perovskite solar cells.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"11 1","pages":"e202513869"},"PeriodicalIF":16.9000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Design-Driven Interface Engineering Enabling Simultaneous Defect Passivation and Enhanced Hole Extraction in Perovskite Solar Cells.\",\"authors\":\"Wei Jia,Riming Sun,Jingyuan Qiao,Guangchao Shi,Qiangqiang Zhao,Ziyan Gong,Siming Zheng,Ruida Xu,Jingzhi Shang,Lin Song,Kai Wang,Wei Huang,Ruihao Chen,Yiyun Fang,Hongqiang Wang,Zi-Qiang Rong\",\"doi\":\"10.1002/anie.202513869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interface engineering has emerged as an effective strategy to address interface defects and energy level misalignment between the perovskite and hole transport layer (HTL). Herein, three novel multifunctional hole interface molecules with distinct substituents were designed to passivate defects at the perovskite/HTL interface. These molecules integrate hole-transporting groups with passivating units, enabling effective defect passivation, improved energy level alignment, and facilitating efficient carrier extraction. Among the three hole transport interface molecules (HTIMs), the 3-(3,6-bis(4-(bis(4-(methylthio)phenyl)amino)phenyl)-9H-carbazol-9-yl)hexan-1-amine hydroiodide (MeS-TPA-Cbz-HAI), comprising -MeS and HAI units, exhibited superior interface passivation capability and greater chemical compatibility with 2,2',7,7'-Tetrakis (N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD), leading to a reduction in defect density and enhanced hole transport. Consequently, the device based on MeS-TPA-Cbz-HAI achieved a notable power conversion efficiency (PCE) of 25.83%. Moreover, the unencapsulated device maintained 94% of its initial efficiency after 1000 hours of continuous operation under ambient conditions (30%-65% relative humidity), demonstrating remarkable long-term stability. This design strategy for hole interface molecules presents a promising avenue for achieving both high efficiency and operational stability in perovskite solar cells.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"11 1\",\"pages\":\"e202513869\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202513869\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202513869","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

界面工程已成为解决钙钛矿与空穴传输层(HTL)之间的界面缺陷和能级错位的有效策略。本文设计了三种具有不同取代基的新型多功能空穴界面分子来钝化钙钛矿/ html界面上的缺陷。这些分子将空穴传递基团与钝化单元结合在一起,实现了有效的缺陷钝化,改善了能级排列,并促进了高效的载流子提取。在3个空穴迁移界面分子(HTIMs)中,包含- mes和HAI单元的3-(3,6-二(4-二(4-甲基硫苯基)氨基)苯基)- 9h -咔唑-9-基)己胺-1-氢碘化物(MeS-TPA-Cbz-HAI)表现出优异的界面钝化能力,与2,2',7,7'-四(N,N-对甲氧基苯胺)-9,9'-螺双芴(Spiro-OMeTAD)具有更好的化学相容性,从而降低了缺陷密度,增强了空穴迁移。因此,基于MeS-TPA-Cbz-HAI的器件实现了25.83%的显著功率转换效率(PCE)。此外,未封装的装置在环境条件下(相对湿度30%-65%)连续运行1000小时后仍保持其初始效率的94%,表现出显著的长期稳定性。这种空穴界面分子的设计策略为实现钙钛矿太阳能电池的高效率和运行稳定性提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular Design-Driven Interface Engineering Enabling Simultaneous Defect Passivation and Enhanced Hole Extraction in Perovskite Solar Cells.
Interface engineering has emerged as an effective strategy to address interface defects and energy level misalignment between the perovskite and hole transport layer (HTL). Herein, three novel multifunctional hole interface molecules with distinct substituents were designed to passivate defects at the perovskite/HTL interface. These molecules integrate hole-transporting groups with passivating units, enabling effective defect passivation, improved energy level alignment, and facilitating efficient carrier extraction. Among the three hole transport interface molecules (HTIMs), the 3-(3,6-bis(4-(bis(4-(methylthio)phenyl)amino)phenyl)-9H-carbazol-9-yl)hexan-1-amine hydroiodide (MeS-TPA-Cbz-HAI), comprising -MeS and HAI units, exhibited superior interface passivation capability and greater chemical compatibility with 2,2',7,7'-Tetrakis (N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD), leading to a reduction in defect density and enhanced hole transport. Consequently, the device based on MeS-TPA-Cbz-HAI achieved a notable power conversion efficiency (PCE) of 25.83%. Moreover, the unencapsulated device maintained 94% of its initial efficiency after 1000 hours of continuous operation under ambient conditions (30%-65% relative humidity), demonstrating remarkable long-term stability. This design strategy for hole interface molecules presents a promising avenue for achieving both high efficiency and operational stability in perovskite solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信