{"title":"Contrasting Mechanochromic Luminescence of Enantiopure and Racemic Pyrenylprolinamides: Elucidating Solid-State Excimer Orientation by Circularly Polarized Luminescence","authors":"Suguru Ito, Shin Wakiyama, Hao Chen, Masato Abekura, Hidehiro Uekusa, Ryoya Ikemura, Yoshitane Imai","doi":"10.1002/anie.202422913","DOIUrl":"https://doi.org/10.1002/anie.202422913","url":null,"abstract":"Contrasting mechanochromic luminescence (MCL) has been observed for enantiopure and racemic crystals of pyrenylprolinamides with different substituents. Enantiopure crystals exhibited circularly polarized luminescence (CPL), and mechanochromic CPL was achieved due to the formation of hydrogen-bonded excimers in the amorphous state. For the first time, the amorphous-state CPL was elucidated based on the excimer chirality rule.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"32 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photochromic Metal-organic Frameworks Based on Host-guest Strategy and Different Viologen Derivatives for Organic Amines Sensing and Information Anticounterfeiting","authors":"Yi-Dan Li, Lu-Fang Ma, Guo-Ping Yang, Yao-Yu Wang","doi":"10.1002/anie.202421744","DOIUrl":"https://doi.org/10.1002/anie.202421744","url":null,"abstract":"The encapsulation of viologen derivatives in metal-organic frameworks (MOFs) to construct host-guest materials has been widely discussed owing to their distinctive spatial arrangement and physical/chemical properties. Herein, three new photochromic MOFs (NWM-1-3) have been successfully synthesized by 1,1,2,2-Tetra(4-carboxylphenyl)ethylene (H4TCPE) ligand as well as three different viologen derivatives based on host-guest strategy. Remarkably, NWM-1-3 exhibit a notable reversible photochromism change from yellow to green under 365 nm UV irradiation. The distance between the electron-deficient N atom in the viologens and the electron-rich carboxylate oxygens satisfies the electron transfer pathway, and thus electron transfer (ET) occurs upon irradiation, producing intermolecular viologen radicals. NWM-1 is able to produce colored responses to different volatile amines by ET and can be recognizable to the naked eye. Differential Pulse Voltammetry (DPV) analysis and comparative experiments have demonstrated that the host-guest strategy significantly enhances the electron-accepting ability of viologens, thereby achieving superior amine sensing performance. NWM-2 and 3 have been realized by multiple methods, such as inkjet printing, fingerprint, and QR codes for anti-counterfeiting. This work provides new host-guest strategy for designing highly sensitive photochromic materials and color-tunable luminescent materials, advancing the development of assembled photochromic materials closer to commercialization.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"18 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Qi, Jianxiang Huang, Junjie Wei, Jiayin Zhou, Depeng Liu, Longqiang Li, Wuzhen Luo, Guangqiang Yin, Tao Chen
{"title":"Disturbance-Triggered Instant Crystallization Activating Bioinspired Emissive Gels","authors":"Min Qi, Jianxiang Huang, Junjie Wei, Jiayin Zhou, Depeng Liu, Longqiang Li, Wuzhen Luo, Guangqiang Yin, Tao Chen","doi":"10.1002/anie.202501054","DOIUrl":"https://doi.org/10.1002/anie.202501054","url":null,"abstract":"Many marine organisms feature sensitive sensory-perceptual systems to sense the surrounding environment and respond to disturbance with intense bioluminescence. However, it remains a great challenge to develop artificial materials that can sense external disturbance and simultaneously activate intense luminescence, although such materials are attractive for visual sensing and intelligent displays. Herein, we present a new class of bioinspired smart gels constructed by integrating hydrophilic polymeric networks, metastable supersaturated salt and fluorophores containing heterogenic atoms. Upon external disturbance, the composite gels undergo an instant and reversible soft-rigid state transition, simultaneously turning on intense fluorescence and activating ultralong afterglow emission with a maximum lifetime of 877.15 ms. The experimental results and molecular dynamics simulations reveal that the disturbance-induced luminescence mainly results from the geometrical confinement of aggregated fluorophores and enhanced molecular interactions to immensely suppress the non-radiative dissipation. Given their versatile and sensitive disturbance-responsiveness, dynamic interactive painting and 3D smart optical displays are demonstrated. This study paves a new avenue to achieve disturbance-sensing soft materials and promotes the development of smart visual sensors and interactive optical displays.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"138 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Monomer Design Enables Mechanistic Mapping of Anionic Ring-Opening Polymerization of Aromatic Thionolactones","authors":"Shaoqiu Zheng, Shu-Sen Chen, Yang-Yang Li, Minjian Liao, Xuhui Liang, Ke Li, Xiaopeng Li, Jinming Hu, Dian-Feng Chen","doi":"10.1002/anie.202500581","DOIUrl":"https://doi.org/10.1002/anie.202500581","url":null,"abstract":"Degradable chalcogenide polyesters, e.g., polythioesters (PTEs), typically exhibit improved thermal, mechanical, and optical properties. Anionic ring-opening polymerization (ROP) of thionolactones, an intrinsically promising yet underexplored approach to accessing PTEs, however, is still limited by: intolerance of metal catalysts, inadequate control over chain growth, and the absence of aromatic system. Monomer design-boosted mechanistic studies may address the above challenges. Here, we present a new and highly reactive thionolactone synthesized from 1,1′-binaphthyl-2,2′-diol (BINOL). Our investigations into polymerization kinetics and thermodynamics have underscored the importance of rapid initiation, eventually leading to the discovery of tetrabutylammonium 2-naphthyl-thiocarboxylate as a distinctive initiator that enables genuinely controlled and living polymerization of thionolactones. Ultimately, the atropisomerism inherent in BINOL has resulted in the creation of axially chiral PTE materials with tailored molecular weights, enantiomeric compositions, and topologies.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"185 3 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Minchao Liu, Zirui Lv, Yao Peng, Yufang Kou, Tiancong Zhao, Hongyue Yu, Jia Jia, Lifei Gao, Cheng Shang, Fan Zhang, Dongyuan Zhao, Xiaomin Li
{"title":"Unlocking Advanced Architectures of Single-Crystal Metal-Organic Frameworks","authors":"Minchao Liu, Zirui Lv, Yao Peng, Yufang Kou, Tiancong Zhao, Hongyue Yu, Jia Jia, Lifei Gao, Cheng Shang, Fan Zhang, Dongyuan Zhao, Xiaomin Li","doi":"10.1002/anie.202423939","DOIUrl":"https://doi.org/10.1002/anie.202423939","url":null,"abstract":"The synthesis of metal-organic frameworks (MOFs) with diverse geometries has captivated considerable interest due to their manifestation of novel and extraordinary properties. While much progress has been made in shaping regular polyhedral single-crystal MOFs, the creation of more complex, topologically intricate nanostructures remains a largely unexplored frontier. Here, we present a refined site-specific anisotropic assembly and etching co-mediation approach to fabricate a series of hierarchical MOF nanohybrids and single-crystal MOFs. This approach yields ZIF-8&mSiO2 nanohybrids with diverse topologies, alongside derived single-crystal MOF nanoparticles exhibiting intricate morphologies such as hexapods, nested nanocages, and octopods. Our method involves the selective growth of six mSiO2 nanoplates on the {100} facets of ZIF-8 nanocubes, forming the cubic-shaped ZIF-8&mSiO2 nanohybrids, with the concurrent etching of the {110} facets of initial ZIF-8 nanocubes. By fine-tuning this balance between the growth and etching, we achieved precise morphological control, transforming cubic nanohybrids into intricate hexapods nanohybrids. Additionally, secondary epitaxial growth of homo- or hetero-MOFs on these hybrids led to ZIF-8&mSiO2&MOF composites with six mSiO2 inlays. Finally, selective alkaline etching of the mSiO2 compartments result in single-crystal MOF nanoparticles with unprecedented and sophisticated morphologies, such as hexapods, nested nanocages, octopods.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"9 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transient Allosteric Regulation of Catalysis by Effector Switching in a Pt2L4 Cage","authors":"Joost Reek, Zoe Ashbridge","doi":"10.1002/anie.202500214","DOIUrl":"https://doi.org/10.1002/anie.202500214","url":null,"abstract":"The complexity of allosteric enzymatic regulation continues to inspire synthetic chemists seeking to emulate interconnected biological systems. In this work, a Pt2L4 cage capable of catalyzing the cyclization reaction of an alkynoic tosyl amide is orthogonally coupled to a diacid-catalyzed carbodiimide-hydration cycle. This new Pt-catalyzed cyclization reaction is demonstrated to exhibit electronic regulation by inclusion of different guest effectors. The orthogonal diacid-catalyzed carbodiimide hydration cycle produces transiently diverse guests that influence the rate of the Pt-catalyzed cyclization reaction to different extents. Further complexity can be introduced to the system through displacing the transiently-formed, weakly bound anhydride guest with the stronger binding fumaronitrile, affecting the catalytic rate to a larger extent for the duration of the orthogonal reaction cycle. The modulation of a Pt-catalyzed cyclization reaction can thus be regulated transiently over the course of the reaction—either up- or down-regulating the turnover frequency (TOF)—via coupling with a temporally controllable orthogonal process. This study demonstrates that principles of allosteric enzymatic regulation can also be applied to simple artificial systems.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"74 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amir Roshanzadeh, Hyllana C. D. Medeiros, Christopher K. Herrera, Carson Malhado, Anton W. Tomich, Stephen P. Fisher, Sergio Lovera, Matthew Bates, Vincent Lavallo, Richard R. Lunt, Sophia Y. Lunt
{"title":"Next-Generation Photosensitizers: Cyanine-Carborane Salts for Superior Photodynamic Therapy of Metastatic Cancer","authors":"Amir Roshanzadeh, Hyllana C. D. Medeiros, Christopher K. Herrera, Carson Malhado, Anton W. Tomich, Stephen P. Fisher, Sergio Lovera, Matthew Bates, Vincent Lavallo, Richard R. Lunt, Sophia Y. Lunt","doi":"10.1002/anie.202419759","DOIUrl":"https://doi.org/10.1002/anie.202419759","url":null,"abstract":"Photodynamic therapy (PDT) has emerged as a promising targeted treatment for cancer. However, current PDT is limited by low tissue penetration, insufficient phototoxicity (toxicity with light irradiation), and undesirable cytotoxicity (toxicity without light irradiation). Here, we report the discovery of cyanine-carborane salts as potent photosensitizers (PSs) that harness the near-infrared (NIR) absorbing [cyanine+] with the inertness of [carborane-]. The implementation of [cyanine+] [carborane-] salts dramatically enhance the cancer targeting of the PSs and decrease cytotoxicity. We characterize the cellular uptake of the cyanine-carborane PSs, organelle localization, generation of reactive oxygen species (ROS) with the ability to cogenerate multiple ROS species, suppression of pro-metastatic pathways, and activation of apoptotic pathways. We further demonstrate the ability of optimized PSs to eliminate tumors in vivo using an orthotopic mouse model of breast cancer. These newly developed [cyanine+] [carborane-] salt PSs introduce a potent therapeutic approach against aggressive breast cancer while decreasing side effects.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"24 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cédric Przybylski, Patrick Brocorens, Laetitia-Eiko Xerri, Antoine Perennes, Geoffrey Gontard, Roberto Lazzaroni, Matthieu Raynal, Laurent Bouteiller
{"title":"Ion Mobility Mass Spectrometry to Probe Sequences in Supramolecular Copolymers","authors":"Cédric Przybylski, Patrick Brocorens, Laetitia-Eiko Xerri, Antoine Perennes, Geoffrey Gontard, Roberto Lazzaroni, Matthieu Raynal, Laurent Bouteiller","doi":"10.1002/anie.202421328","DOIUrl":"https://doi.org/10.1002/anie.202421328","url":null,"abstract":"The analysis of the microstructure of supramolecular copolymers is difficult because of their dynamic character. Here, benzene-1,3,5-tricarboxamide (BTA) co-assemblies are analysed by ion mobility - mass spectrometry (IM-MS) to reveal the presence of various sequences. For example, the IM-MS mobilogram for hexamers composed of 4 units from a first monomer and 2 units from a second monomer is a broad distribution due to the presence of 9 possible isomeric sequences, which can be sorted out based on calculated collision cross-sections. This approach gives unprecedented information on supramolecular copolymer sequences.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"38 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Zhao, Pengfei Yin, Yuanyuan Yang, Ruguang Wang, Cairong Gong, Jisi Li, Jiaxin Guo, Quanlu Wang, Tao Ling
{"title":"Converting Fe–N–C single-atom catalyst to a new FeNxSey cluster catalyst for proton-exchange membrane fuel cells","authors":"Yang Zhao, Pengfei Yin, Yuanyuan Yang, Ruguang Wang, Cairong Gong, Jisi Li, Jiaxin Guo, Quanlu Wang, Tao Ling","doi":"10.1002/anie.202419501","DOIUrl":"https://doi.org/10.1002/anie.202419501","url":null,"abstract":"Fe–N–C catalyst is the most promising alternative to platinum catalyst for proton-exchange membrane fuel cells (PEMFCs), however its high performance cannot be maintained for a long enough time in device. The construction of a new Fe coordination environment that is different from the square-planar Fe–N 4 configuration in Fe–N–C catalyst is expected to break current stability limits, which however remains unexplored. Here, we report the conversion of Fe–N–C to a new FeNxSey catalyst, where the Fe sites are three-dimensionally (3D) co-coordinated by N and Se atoms. The FeNxSey catalyst exhibits much better 4e– ORR activity and selectivity than the Fe–N–C catalyst. Specifically, the yields of H2O2 and ·OH radicals on FeNxSey are only one-quarter and one-third of that on Fe–N–C, respectively. Therefore, the FeNxSey catalyst exhibits outstanding stability, losing only 10 mV in E1/2 after 10,000 cycles, much smaller than that of the Fe–N–C catalyst (56 mV), representing the most stable Pt-free catalysts ever reported. Moreover, the 3D co-coordination structure inhibits the Fe demetallization in the presence of H2O2. As a result, the FeNxSey based PEMFC shows excellent durability, with the current density attenuation significantly lower than that of the Fe–N–C based device after accelerated durability testing.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"57 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qinghua Zhang, Wentong Meng, Sifan Chen, Ming Wu, Feng Gao, Yang Hou, Xiaoli Zhan, Wei Hu, Lijun Liang
{"title":"Dehydration-enhanced Ion Recognition of Triazine Covalent Organic Frameworks for High-resolution Li+/Mg2+ Separation","authors":"Qinghua Zhang, Wentong Meng, Sifan Chen, Ming Wu, Feng Gao, Yang Hou, Xiaoli Zhan, Wei Hu, Lijun Liang","doi":"10.1002/anie.202422423","DOIUrl":"https://doi.org/10.1002/anie.202422423","url":null,"abstract":"The precise and rapid extraction of lithium from salt-lake brines is critical to meeting the global demand for lithium resources. However, it remains a major challenge to design ion-transport membranes with accurate recognition and fast transport path for the target ion. Here, we report a triazine covalent organic framework (COF) membrane with high resolution for Li+ and Mg2+ that enables fast Li+ transport while almost completely inhibiting Mg2+ permeation. The remarkably high rejection of Mg2+ by the COF membrane is achieved via imposed ion dehydration and the construction of the energy well. The proper hydrophilic environment of the COF channel promotes the dissociation of Li+ from the negatively charged functional groups, allowing Li+ for hopping transport supported by the sulfonate side-chains to shorten the diffusion path of Li+. Under high-salinity electrodialysis conditions, the COF membrane demonstrates robust Li+/Mg2+ separation performance (No Mg2+ were detected in the collected solution), achieving efficient lithium recovery and high product purity (Li2CO3: 99.3%). This membrane design strategy enables high energy efficiency and powerful lithium extraction in the electrodialysis lithium extraction process, and can be generalized to other energy and separation related membranes.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"74 1","pages":""},"PeriodicalIF":16.6,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}