醚锚定mof为高能锂金属电池提供稳定的假悬浮电解质。

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yu Han,Yong Chen,Tonghui Zhang,Zhiye Hao,Lianlian He,Weiting Ma,Taolue Wen,Shunshun Zhao,Qimin Peng,Zhenzhen Shen,Robin Wang,Guoxiu Wang,Shimou Chen
{"title":"醚锚定mof为高能锂金属电池提供稳定的假悬浮电解质。","authors":"Yu Han,Yong Chen,Tonghui Zhang,Zhiye Hao,Lianlian He,Weiting Ma,Taolue Wen,Shunshun Zhao,Qimin Peng,Zhenzhen Shen,Robin Wang,Guoxiu Wang,Shimou Chen","doi":"10.1002/anie.202518384","DOIUrl":null,"url":null,"abstract":"Rational electrolyte design, capable of simultaneously accelerating bulk ion transport and stabilizing interfacial chemistry, is indispensable for achieving high-energy-density lithium metal batteries (LMBs). Here, we demonstrate that short-chain ether-functionalized metal-organic frameworks (S@MOFs) meet these requirements by efficiently tailoring Li⁺ coordination and reconstructing the electrode/electrolyte interphase, achieving durable interfacial ion transport kinetics. Synergistic experimental and theoretical investigations demonstrate that the S@MOF-based electrolyte features distinctive pseudosuspension characteristics, harnessing ether chemistry that affords Li-metal compatibility and Li-salt coordination in concert with MOF's abundant binding sites and ordered rigid frameworks. The resultant S@MOF-based electrolyte delivers robust thermodynamic stability across -10 to 60 °C, even in LiNi0.8Co0.1Mn0.1O2 (NCM811)||Li full-cell configurations. Under lean-electrolyte and 50 µm-thick Li-metal configurations, it achieves 92.40% capacity retention for LiCoO2||Li after 1000 cycles. Remarkably, 90.70% for quasi-solid-state NCM811||Li (500 cycles), and 93.21% for Na3V2(PO4)3||Na (3000 cycles) were obtained, confirming its broad applicability across alkali-metal battery chemistries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"59 1","pages":"e202518384"},"PeriodicalIF":16.9000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ether-Anchored MOFs Enable Stable Pseudosuspension Electrolytes for High-Energy Lithium Metal Batteries.\",\"authors\":\"Yu Han,Yong Chen,Tonghui Zhang,Zhiye Hao,Lianlian He,Weiting Ma,Taolue Wen,Shunshun Zhao,Qimin Peng,Zhenzhen Shen,Robin Wang,Guoxiu Wang,Shimou Chen\",\"doi\":\"10.1002/anie.202518384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rational electrolyte design, capable of simultaneously accelerating bulk ion transport and stabilizing interfacial chemistry, is indispensable for achieving high-energy-density lithium metal batteries (LMBs). Here, we demonstrate that short-chain ether-functionalized metal-organic frameworks (S@MOFs) meet these requirements by efficiently tailoring Li⁺ coordination and reconstructing the electrode/electrolyte interphase, achieving durable interfacial ion transport kinetics. Synergistic experimental and theoretical investigations demonstrate that the S@MOF-based electrolyte features distinctive pseudosuspension characteristics, harnessing ether chemistry that affords Li-metal compatibility and Li-salt coordination in concert with MOF's abundant binding sites and ordered rigid frameworks. The resultant S@MOF-based electrolyte delivers robust thermodynamic stability across -10 to 60 °C, even in LiNi0.8Co0.1Mn0.1O2 (NCM811)||Li full-cell configurations. Under lean-electrolyte and 50 µm-thick Li-metal configurations, it achieves 92.40% capacity retention for LiCoO2||Li after 1000 cycles. Remarkably, 90.70% for quasi-solid-state NCM811||Li (500 cycles), and 93.21% for Na3V2(PO4)3||Na (3000 cycles) were obtained, confirming its broad applicability across alkali-metal battery chemistries.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"59 1\",\"pages\":\"e202518384\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202518384\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202518384","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

合理的电解质设计是实现高能量密度锂金属电池(lmb)不可缺少的,它能够同时加速大块离子传输和稳定界面化学。在这里,我们证明了短链醚功能化金属有机框架(S@MOFs)通过有效地调整Li⁺的配位和重建电极/电解质界面相来满足这些要求,实现了持久的界面离子传输动力学。协同实验和理论研究表明,S@MOF-based电解质具有独特的假悬浮特性,利用醚化学,与MOF丰富的结合位点和有序的刚性框架相一致,提供锂金属相容性和锂盐配位。由此产生的S@MOF-based电解质在-10至60°C范围内具有强大的热力学稳定性,即使在LiNi0.8Co0.1Mn0.1O2 (NCM811)||Li全电池配置下也是如此。在稀薄电解质和50µm厚的锂金属结构下,经过1000次循环后,LiCoO2||Li的容量保持率达到92.40%。值得注意的是,准固态NCM811||Li(500次循环)获得90.70%,Na3V2(PO4)3||Na(3000次循环)获得93.21%,证实了其在碱金属电池化学中的广泛适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ether-Anchored MOFs Enable Stable Pseudosuspension Electrolytes for High-Energy Lithium Metal Batteries.
Rational electrolyte design, capable of simultaneously accelerating bulk ion transport and stabilizing interfacial chemistry, is indispensable for achieving high-energy-density lithium metal batteries (LMBs). Here, we demonstrate that short-chain ether-functionalized metal-organic frameworks (S@MOFs) meet these requirements by efficiently tailoring Li⁺ coordination and reconstructing the electrode/electrolyte interphase, achieving durable interfacial ion transport kinetics. Synergistic experimental and theoretical investigations demonstrate that the S@MOF-based electrolyte features distinctive pseudosuspension characteristics, harnessing ether chemistry that affords Li-metal compatibility and Li-salt coordination in concert with MOF's abundant binding sites and ordered rigid frameworks. The resultant S@MOF-based electrolyte delivers robust thermodynamic stability across -10 to 60 °C, even in LiNi0.8Co0.1Mn0.1O2 (NCM811)||Li full-cell configurations. Under lean-electrolyte and 50 µm-thick Li-metal configurations, it achieves 92.40% capacity retention for LiCoO2||Li after 1000 cycles. Remarkably, 90.70% for quasi-solid-state NCM811||Li (500 cycles), and 93.21% for Na3V2(PO4)3||Na (3000 cycles) were obtained, confirming its broad applicability across alkali-metal battery chemistries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信