{"title":"Early-life glucocorticoids accelerate lymphocyte count senescence in roe deer","authors":"","doi":"10.1016/j.ygcen.2024.114595","DOIUrl":"10.1016/j.ygcen.2024.114595","url":null,"abstract":"<div><p>Immunosenescence corresponds to the progressive decline of immune functions with increasing age. Although it is critical to understand what modulates such a decline, the ecological and physiological drivers of immunosenescence remain poorly understood in the wild. Among them, the level of glucocorticoids (GCs) during early life are good candidates to modulate immunosenescence patterns because these hormones can have long-term consequences on individual physiology. Indeed, GCs act as regulators of energy allocation to ensure allostasis, are part of the stress response triggered by unpredictable events and have immunosuppressive effects when chronically elevated. We used longitudinal data collected over two decades in two populations of roe deer (<em>Capreolus capreolus</em>) to test whether higher baseline GC levels measured within the first year of life were associated with a more pronounced immunosenescence and parasite susceptibility. We first assessed immunosenescence trajectories in these populations facing contrasting environmental conditions. Then, we found that juvenile GC levels can modulate lymphocyte trajectory. Lymphocyte depletion was accelerated late in life when GCs were elevated early in life. Although the exact mechanism remains to be elucidated, it could involve a role of GCs on thymic characteristics. In addition, elevated GC levels in juveniles were associated with a higher abundance of lung parasites during adulthood for individuals born during bad years, suggesting short-term negative effects of GCs on juvenile immunity, having in turn long-lasting consequences on adult parasite load, depending on juvenile environmental conditions. These findings offer promising research directions in assessing the carry-over consequences of GCs on life-history traits in the wild.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0016648024001576/pdfft?md5=723b97daab30042d68ef890c6123b847&pid=1-s2.0-S0016648024001576-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141765871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects and action mechanism of gonadotropins on ovarian follicular cells: A novel role of Sphingosine-1-Phosphate (S1P). A review","authors":"","doi":"10.1016/j.ygcen.2024.114593","DOIUrl":"10.1016/j.ygcen.2024.114593","url":null,"abstract":"<div><p>Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) control antral follicular growth by regulating several processes, such as the synthesis of hormones and signaling molecules, proliferation, survival, apoptosis, luteinization, and ovulation. To exert these effects, gonadotropins bind to their respective G<sub>s</sub> protein-coupled receptors, activating the protein kinase A (PKA) pathway or recruiting G<sub>q</sub> proteins to activate protein kinase C (PKC) signaling. Although the action mechanism of FSH and LH is clear, recently, it has been shown that both gonadotropins promote the synthesis of sphingosine-1-phosphate (S1P) in granulosa and theca cells through the activation of sphingosine kinase 1. Moreover, the inhibition of SPHKs reduces S1P synthesis, cell viability, and the proliferation of follicular cells in response to gonadotropins, and the addition of S1P to the culture medium increases the proliferation of granulosa and theca cells without apparent effects on sexual steroid synthesis. Therefore, we consider that S1P is a crucial signaling molecule that complements the canonical gonadotropin pathway to promote the proliferation and viability of granulosa and theca cells.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of corazonin signaling in a molluscan model species, Lymnaea stagnalis","authors":"","doi":"10.1016/j.ygcen.2024.114594","DOIUrl":"10.1016/j.ygcen.2024.114594","url":null,"abstract":"<div><p>In recent years, new concepts have emerged regarding the nomenclature, functions, and relationships of different peptide families of the gonadotropin-releasing hormone (GnRH) superfamily. One of the main driving forces for this originated from the emerging evidence that neuropeptides previously called molluscan GnRH are multifunctional and should be classified as corazonin (CRZ). However, research articles still appear that use incorrect nomenclature and attribute the same function to molluscan CRZs as vertebrate GnRHs. The aim of the present study was to further support the recent interpretation of the origin and function of the GnRH superfamily. Towards this goal, we report the characterization of CRZ signaling system in the molluscan model species, the great pond snail (<em>Lymnaea stagnalis</em>). We detected a CRZ-receptor-like sequence (Lym-CRZR) by homology-searching in the <em>Lymnaea</em> transcriptomes and the deduced amino acid sequence showed high sequence similarity to GnRH receptors and CRZ receptors. Molecular phylogenetic tree analysis demonstrated that Lym-CRZR is included in the cluster of molluscan CRZRs. Lym-CRZR transiently transfected into HEK293 cells was found to be localized at the plasma membrane, confirming that it functions as a membrane receptor, like other G protein-coupled receptors. The signaling assays revealed that the previously identified Lym-CRZ neuropeptide stimulated intracellular Ca<sup>2+</sup> mobilization in a dose-dependent manner, but not cyclic AMP production, in HEK293 cells transfected with Lym-CRZR. Finally, we demonstrated a wide tissue distribution of Lym-CRZR. These results suggest that Lym-CRZ is a multifunctional peptide and provide further insights into the evolution of the GnRH neuropeptide superfamily. The present study also supports the notion that previously termed molluscan “GnRH” should be classified as “CRZ”.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0016648024001564/pdfft?md5=63789da2cf1dcb5869ba6a2552a20ffc&pid=1-s2.0-S0016648024001564-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of tannic acid on adiponectin and gonads in male Brandt’s voles (Lasiopodomys brandtii)","authors":"","doi":"10.1016/j.ygcen.2024.114592","DOIUrl":"10.1016/j.ygcen.2024.114592","url":null,"abstract":"<div><p>Adiponectin regulates steroid production and influences gonadal development. This study examined the effects of tannic acid (TA) on the adiponectin levels and gonads of male Brandt’s voles. Male Brandt’s voles aged 90 d were randomly separated into three groups: a control group (provided distilled water), a group given 600 mg∙kg-1 TA, and a group that received 1200 mg∙kg-1 TA (continuous gavage for 18 d). In this study, we examined the effects of TA on the adiponectin, antioxidant, and inflammatory levels in the testes. Furthermore, we examined the expression of important regulatory elements that influence adiponectin expression and glucose utilisation. In addition, the body weight, reproductive organ weight, and testicular shape were assessed. Our study observed that TA treatment increased serum adiponectin levels, DsbA-L and Ero1-Lα transcription levels, and AdipoR1, AMPK, GLUT1, and MCT4 expression levels in testicular tissue. TA enhanced pyruvate and lactic acid levels in the testicular tissue, boosted catalase activity, and reduced MDA concentrations. TA reduced the release of inflammatory factors in the testicular tissues of male Brandt’s voles. TA increased the inner diameter of the seminiferous tubules. In conclusion, TA appears to stimulate adiponectin secretion and gonadal growth in male Brandt’s voles while acting as an antioxidant and anti-inflammatory agent.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Disruption in cortisol synchrony and pair-dissolution in the serially monogamous convict cichlid (Amatitlania nigrofasciata)","authors":"","doi":"10.1016/j.ygcen.2024.114589","DOIUrl":"10.1016/j.ygcen.2024.114589","url":null,"abstract":"<div><p>Endocrine synchronization is a biological process often associated with social bonding. The mechanisms that mediate this process have been well studied in many vertebrate clades with evolved complex social behaviors. However, studies focusing on such processes in the less neurologically complex teleost clade are surprisingly lacking. In this study, we investigated the hypothesis that mated pairs of convict cichlids (<em>Amatitlania nigrofasciata</em>) perform cortisol synchronization and that the disruption of this might accompany pair-bond instability. Mated pairs were subjected to both behavioral and non-invasive waterborne hormonal assays to better understand the biological complexity of endocrine synchrony and its role in pair-bonding. Baseline cortisol assays indicated a positive correlation between male and female cortisol levels. Individuals that were subjected to a prolonged separation from their mate exhibited a negative correlation in cortisol synchrony after being reunited with their mate. Cortisol synchrony was disrupted, but pairs did not show a significant variance of intrapair aggression after initial pair reunion. However, more than half of the pairs that received the stressor exhibited significantly higher levels of intrapair aggression than their time matched controls approximately 1–7 days following this reunion, indicating pair-dissolution. Concurrently, pairs who underwent the stressor but maintained their bonds did not display an increase in intrapair aggression and also re-synchronized their cortisol levels. Not only does this study provide crucial insights in regard to the role of cortisol synchrony in serially monogamous systems, but it also suggests that the mechanisms that mediate the synchronization of endocrine through the formation of social bonds are more evolutionarily conserved than originally thought.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The adipokine profile in the plasma and anterior pituitary of pigs during the estrous cycle","authors":"","doi":"10.1016/j.ygcen.2024.114588","DOIUrl":"10.1016/j.ygcen.2024.114588","url":null,"abstract":"<div><p>Adipokines play crucial roles in both reproductive and energy metabolic processes. This study aimed to compare the hormonal plasma profile of adiponectin, apelin, vaspin, chemerin, resistin, visfatin, and adipolin, and the expression of their receptors in the anterior pituitary (AP) between normal-weight Large White (LW) and fat Meishan (MS) pigs during different phases of the estrous cycle. We measured adipokine levels in the plasma and assessed their gene expression in the AP. We used Pearson’s correlation analysis to examine potential links between adipokines levels, their receptors, and metabolic parameters (body weight; backfat thickness) and reproductive parameters (pituitary weight; age at puberty; levels of gonadotropins, steroid hormones; and gene expression of gonadotropin-releasing hormone receptor and gonadotropins in AP). The plasma levels of the evaluated adipokines fluctuated with phase and breed, except for visfatin and adipolin. Moreover, adipokine expression in AP varied significantly between breeds and estrous cycle phases, except for resistin receptor <em>CAP1</em>. Notably, we observed a positive correlation between plasma levels of adiponectin and its transcript in the AP only in MS pigs. Apelin gene expression correlated negatively with its receptor in MS, while we observed a breed-dependent correlation between chemerin gene expression and its receptor <em>CMKLR1</em>. We identified significant positive or negative correlations between adipokines or their receptor levels in plasma and AP as well as metabolic or reproductive parameters, depending on the breed. In conclusion, we have demonstrated breed-specific and estrous cycle-dependent regulation of adipokines in AP, underscoring their potential impact on metabolic and reproductive processes in swine.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0016648024001503/pdfft?md5=3f685f62a6c449469fe92fed6466a91c&pid=1-s2.0-S0016648024001503-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MicroRNAs are involved in ovarian physiology of greater amberjack (Seriola dumerili) under captivity","authors":"","doi":"10.1016/j.ygcen.2024.114581","DOIUrl":"10.1016/j.ygcen.2024.114581","url":null,"abstract":"<div><p>Gonad maturation is critical for the reproductive success of any organism, and in fish, captivity can significantly affect their reproductive performance, leading to maturation incompetence and spawning failure. The greater amberjack (<em>Seriola dumerili</em>), a fish species recently introduced to aquaculture fails to undergo oocyte maturation, ovulation, and spawning when reared in aquaculture facilities. Since confinement has been shown to influence gonad maturation and completion of the reproductive cycle, investigations into epigenetic mechanisms may shed light on the reasoning behind the reproductive dysfunctions of fish under captivity. Among the known important epigenetic regulators are small non-coding RNAs (sncRNAs), and in particular microRNAs (miRNAs). In this study, immature, maturing (late vitellogenesis), and spent ovaries of captive greater amberjack were collected, and the differential expression of miRNAs in the three different ovarian development stages was examined. Expression patterns of conserved and novel miRNAs were identified, and potential targets of highly differentially expressed miRNAs were detected. Additionally, read length distribution showed two prominent peaks in the three different ovarian maturation stages, corresponding to miRNAs and putative piwi-interacting RNAs (piRNAs), another type of ncRNAs with a germ-cell specific role. Furthermore, miRNA expression patterns and their putative target mRNAs are discussed, in relevance with the different ovarian maturation stages of captive greater amberjack. Overall, this study provides insights into the role of miRNAs in the reproductive dysfunctions observed in fish under captivity and highlights the importance of epigenetic mechanisms in understanding and managing the reproductive performance of economically important fish species.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Crustacean endocrinology: Sexual differentiation and potential application for aquaculture","authors":"","doi":"10.1016/j.ygcen.2024.114578","DOIUrl":"10.1016/j.ygcen.2024.114578","url":null,"abstract":"<div><p>Crustaceans, which represent a significant subset of arthropods, are classified into three major classes: Ostracoda, Malacostraca, and Branchiopoda. Among them, sex manipulation in decapod species from the Malacostraca class has been extensively researched for aquaculture purposes and to study reproductive physiology and sexual plasticity. Some decapods exhibit sexual dimorphism that influences their biological and economic value. Monosex culture, in which only one sex is cultivated, increases production yields while reducing the risk of invasiveness, as genetic leakage into natural waters is less likely to occur. Differences in yield are also observed when cultivating different sexes, with all-male cultures of <em>Macrobrachium rosenbergii</em> being more profitable than both mixed and all-female cultures. Research on decapod sexual differentiation has led to a better understanding of sex determination and sexual differentiation processes in arthropods. Similar to most mammals and other vertebrate classes, Malacostraca crustaceans, including decapods, exhibit a cell-non-autonomous mode of sexual development. Genetic factors (e.g., sex chromosomes) and endocrine factors (e.g., insulin-like androgenic gland factor and crustacean female sex hormone) play pivotal roles in the development of sexually dimorphic traits. This review synthesizes the existing understanding of sex determination mechanisms and the role of sex hormones in decapod species. Additionally, it provides an overview of the methyl farnesoate, which has been suggested to be involved in male sex differentiation in some crab species, as well as the phenomenon of male-to-female sex reversal in host decapods caused by parasitic crustaceans.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
José Ávila-Mendoza , Valeria A. Urban-Sosa , Iván Lazcano , Aurea Orozco , Maricela Luna , Carlos G. Martínez-Moreno , Carlos Arámburo
{"title":"Comparative analysis of Krüppel-like factors expression in the retinas of zebrafish and mice during development and after injury","authors":"José Ávila-Mendoza , Valeria A. Urban-Sosa , Iván Lazcano , Aurea Orozco , Maricela Luna , Carlos G. Martínez-Moreno , Carlos Arámburo","doi":"10.1016/j.ygcen.2024.114579","DOIUrl":"10.1016/j.ygcen.2024.114579","url":null,"abstract":"<div><p>The Krüppel-like factors (KLFs) have emerged as important transcriptional regulators of various cellular processes, including neural development. Some of them have been described as intrinsic factors involved in axon regeneration in the central nervous system (CNS) of vertebrates. Zebrafish are known for their ability to regenerate several tissues in adulthood, including the CNS, a capability lost during vertebrate evolution and absent in adult mammals. The role that KLFs could play in this differential ability remains unknown. Therefore, in this study, we analyzed the endogenous response of certain KLFs implicated in axon regeneration (KLFs 6, 7, 9, and 13) during retina development and after axon injury. The results showed that the expression of <em>Klfs 6</em>, <em>7</em>, and <em>13</em> decreases in the developing retina of mice but not in zebrafish, while the mRNA levels of <em>Klf9</em> strongly increase in both species. The response to injury was further analyzed using optic nerve crush (ONC) as a model of lesion. Our analysis during the acute phase (hours) demonstrated an induction of <em>Klfs 6</em> and <em>7</em> expression exclusively in the zebrafish retina, while <em>Klfs 9</em> and <em>13</em> mRNA levels increased in both species. Further analysis of the chronic response (days) showed that mRNA levels of <em>Klf6</em> transiently increase in the retinas of both zebrafish and mice, whereas those of <em>Klf7</em> decrease later after optic nerve injury. In addition, the analysis revealed that the expression of <em>Klf9</em> decreases, while that of <em>Klf13</em> increases in the retinas of zebrafish in response to optic nerve injury but remains unaltered in mice<strong>.</strong> Altogether, these findings support the hypothesis that KLFs may play a role in the differential axon regeneration abilities exhibited by fish and mice.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0016648024001412/pdfft?md5=868fc1b3c68665abcff4678d66d567bc&pid=1-s2.0-S0016648024001412-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141534258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xu Yang , Yangsheng Wu , Shen Zhang , Riping Gan , Zhe Wang , Lihong Zhang , Weimin Zhang
{"title":"Expression of Tshb and Tshr in the ricefield eel Monopterus albus: Potential paracrine/autocrine roles in gonads","authors":"Xu Yang , Yangsheng Wu , Shen Zhang , Riping Gan , Zhe Wang , Lihong Zhang , Weimin Zhang","doi":"10.1016/j.ygcen.2024.114580","DOIUrl":"10.1016/j.ygcen.2024.114580","url":null,"abstract":"<div><p>Thyroid stimulating hormone (TSH), a glycoprotein synthesized and secreted from thyrotrophs of the pituitary gland, is composed of a glycoprotein hormone common alpha subunit (CGA) and a specific beta subunit (TSHB). The major biological function of TSH is to stimulate thyroidal follicles to synthesize and secrete thyroid hormones through activating its cognate receptor, the thyroid stimulating hormone receptor (TSHR). In the present study, polyclonal antisera against ricefield eel Tshb and Tshr were generated respectively, and the expression of Tshb and Tshr was examined at mRNA and protein levels. RT-PCR analysis showed that <em>tshb</em> mRNA was expressed mainly in the pituitary as well as in some extrapituitary tissues including the ovary and testis. <em>Tshr</em> mRNA was also expressed in a tissue-specific manner, with transcripts detected in tissues including the kidney, ovary, and testis. The immunoreactive Tshb signals in the pituitary were shown to be localized to the inner areas of adenohypophysis which are close to the neurohypophysis of adult ricefield eels. Tshb-immunoreatvie cells in the pituitary of ricefield eel larvae were firstly observed at hatching. The expression of immunoreactive Tshb and Cga was also detected in ricefield eel ovary and testis together with Tshr. In the ovary, immunoreactive Tshb, Cga, and Tshr were observed in oocytes and granulosa cells. In the testis, immunoreactive Tshb was mainly observed in Sertoli cells while immunoreactive Cga and Tshr were detected in germ cells as well as somatic cells. Results of the present study suggest that Tsh may be synthesized both in the ovary and testis locally, which may play paracrine and/or autocrine roles in gonadal development in ricefield eels.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141534259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}