{"title":"Thyroid hormones activate TH/E2 receptor/regulator system and drive Na+/K+-ATPase in the ovarian wall of hypothyroid air-breathing fish (Anabas testudineus Bloch)","authors":"Meenu Viswanath , M.C.Subhash Peter","doi":"10.1016/j.ygcen.2024.114640","DOIUrl":"10.1016/j.ygcen.2024.114640","url":null,"abstract":"<div><div>In fish, as in other vertebrates, thyroid hormones (THs) act on many biological processes including growth and reproduction. Primary THs such as thyroxine (T<sub>4</sub>) and triiodothyronine (T<sub>3</sub>) are known for their direct action on osmoregulatory organs regulating ion osmotic homeostasis in many teleost fishes. However, it is unclear how these hormones interact with estradiol-17β (E<sub>2</sub>), an ovarian hormone that regulates the development of oocytes. We thus examined the short-term <em>in vivo</em> action of varied THs such as T<sub>4,</sub> T<sub>3</sub> and T<sub>2</sub>, a potent TH metabolite diiodothyronine, on the expression pattern of receptors of THs and E<sub>2</sub> in the ovarian wall of the hypothyroid climbing perch to identify the interactive pattern of TH/E<sub>2</sub> receptor system and the molecular dynamics of Na<sup>+</sup>/K<sup>+</sup>−ATPase (NKA) subunits in the ovarian wall that provides structural and functional support to ovary. We found differential pattern of transcript abundance of NKA subunits isoforms such as <em>nkaα1a, nka</em>α<em>1b, nka</em>α<em>1c atp1b1, atp1b2</em> and <em>fxyd3</em>, <em>fxyd5, fxyd6,</em> TH receptor isoforms (<em>tr<, trβ, tr<B</em>), deiodinases (<em>deo1, deo2</em> and <em>deo3</em>) and TH transporter (<em>mct8, mct10</em>) and E<sub>2</sub> receptor (<em>er<, erβ, gper</em>), aromatases (<em>cyp19a1a, cyp19a1b</em>) and steroidogenic enzymes (<em>17β-hsd, sf-1, star</em>) in ovarian wall in response to T<sub>4</sub>, T<sub>3</sub> and T<sub>2</sub> administration in MMI-treated fish. The transcript abundance pattern provides evidence for a direct role of THs in the ovarian wall of hypothyroid fish. It confirms a targeted interaction of THs with ER/cyp19a1 and NKA systems. Pattern analysis further revealed that T<sub>4</sub> could produce maximum activation of the TR/Deo/Mct and ER/cyp19a1 systems among three iodinated tyrosines, bringing synergistic interaction between the TH and E<sub>2</sub> systems in the ovarian wall. This novel evidence of direct interaction between the TH/E<sub>2</sub> system and the NKA system in the ovarian wall further testifies to an ion osmotic role for THs in this ovarian structure.</div></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":"360 ","pages":"Article 114640"},"PeriodicalIF":2.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Timothy S. Breton , Maria Eduarda Oliveira , Truly Chillemi , William Harriman , Joanna Korasadowicz , Eme Saverese , Emma Bourget , Casey A. Murray , Christopher J. Martyniuk , Matthew A. DiMaggio
{"title":"Spatial and quantitative gene expression analysis of SREB receptors in the gonads of green-spotted pufferfish (Dichotomyctere nigroviridis)","authors":"Timothy S. Breton , Maria Eduarda Oliveira , Truly Chillemi , William Harriman , Joanna Korasadowicz , Eme Saverese , Emma Bourget , Casey A. Murray , Christopher J. Martyniuk , Matthew A. DiMaggio","doi":"10.1016/j.ygcen.2024.114641","DOIUrl":"10.1016/j.ygcen.2024.114641","url":null,"abstract":"<div><div>Super-conserved Receptors Expressed in Brain (SREB) are a highly conserved family of orphan G protein-coupled receptors that consist of three members in most vertebrates: SREB1 (GPR27), SREB2 (GPR85), and SREB3 (GPR173). Each receptor is associated with diverse physiological processes and expressed in both ovaries and testes, but reproductive functions are only beginning to be understood. In addition, some fishes gained a novel fourth gene, SREB3B, which may have unique functions. The purpose of this study was to conduct a spatial and quantitative analysis of SREBs in the gonads of pufferfish (<em>Dichotomyctere nigroviridis</em>), which expresses all four genes. Multiplex RNAscope and absolute qPCR were used to assess gene expression patterns in both ovaries and testes. Expression was detected in early ovaries and dominated by <em>sreb1</em> (approximately 2500 copies/ng RNA vs. 300 or less for others), with notable expression of all receptors in primary oocytes, granulosa cells, and small numbers of extra-follicular cells. Within primary oocytes, <em>sreb1</em> and <em>sreb3b</em> exhibited diffuse patterns that may indicate early functions, while <em>sreb2</em> and <em>sreb3a</em> were granular and may reflect stored mRNA. Early testicular development was dominated by <em>sreb1</em> and <em>sreb2</em> (∼5000 copies/ng RNA) in spermatogonia. These patterns were somewhat reduced in late testes (∼1000–2600 copies/ng RNA), but <em>sreb3b</em> exhibited a novel spatial pattern (∼380 copies/ng RNA) within spermatogenic cysts. These results highlight diverse roles for the SREB family, and <em>sreb3b</em> is hypothesized to have unique roles in fish reproduction.</div></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":"360 ","pages":"Article 114641"},"PeriodicalIF":2.1,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bin Wang , Zhenfang Tian , Zhihua Yu , Aijun Cui , Yan Jiang , Hai Huang , Yongjiang Xu
{"title":"Differential activation of six galanin receptors by the spexin peptide in yellowtail kingfish (Seriola lalandi)","authors":"Bin Wang , Zhenfang Tian , Zhihua Yu , Aijun Cui , Yan Jiang , Hai Huang , Yongjiang Xu","doi":"10.1016/j.ygcen.2024.114629","DOIUrl":"10.1016/j.ygcen.2024.114629","url":null,"abstract":"<div><div>Spexin (SPX1) is a novel neuropeptide composed of 14 amino acids and well conserved across vertebrates, and it has been implicated in various physiological functions via galanin receptor 2 (GALR2) and GALR3. However, the detailed signaling pathways mediating its actions in target cells are still largely unknown. Accordingly, we addressed this issue in the present study using yellowtail kingfish as a model. SPX1 significantly increased CRE-luc activity in COS-7 cells expressing its cognate receptors GALR2a and GALR2b, and this stimulatory effect was attenuated by two inhibitors of the PKA pathway. Similarly, an evident induction of SRE-luc activity was observed when COS-7 cells transfected with GALR1b, GALR2a, GALR2b, GALR type 1, or GALR type 2 were challenged with SPX1, and two blockers of the PKC pathway suppressed this stimulatory action. Moreover, SPX1 markedly elevated NFAT-RE-luc activity in COS-7 cells expressing GALR1a, GALR2a, or GALR2b, and this promotion was inhibited by two antagonists of the Ca<sup>2+</sup> route. Overall, our results have revealed that activation of six yellowtail kingfish galanin receptors by the SPX1 peptide may occur with different downstream signaling events, which could account for its pleotropic functions.</div></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":"359 ","pages":"Article 114629"},"PeriodicalIF":2.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142462751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fat mass and obesity associated gene and homeobox transcription factor iriquois-3 mRNA profiles in the metabolic tissues of zebrafish are modulated by feeding and food deprivation","authors":"Katayoon Karimzadeh , Chinelo Uju , Asgar Zahmatkesh , Suraj Unniappan","doi":"10.1016/j.ygcen.2024.114621","DOIUrl":"10.1016/j.ygcen.2024.114621","url":null,"abstract":"<div><div>Fat mass and obesity associated gene (FTO) has been strongly associated with obesity, and it is functionally linked to the homeobox transcription factor iriquois-3 (IRX3). In mammals, FTO and IRX3 are involved in the regulation of food intake and metabolism. This study aimed to determine whether FTO and IRX3<!--> <!-->are affected by feeding and food unavailability. FTO and IRX3 mRNA and protein were found widely distributed in all tissues examined, including the brain, muscle, gut, and liver. Postprandial increase in the abundance of FTO and IRX3 mRNAs was observed in metabolic tissues of both male and female zebrafish at 1 h post-feeding. Meanwhile, their expression in the brain and gut decreased at 3 h post-feeding, reaching preprandial levels. Additionally, FTO and IRX3 mRNA abundance in examined tissues increased after 7 days of food deprivation, but substantially decreased after refeeding for 24 h. In summary, we report that both FTO and IRX3 are meal-sensitive genes in zebrafish. The fasting-induced increase suggests a possible appetite regulatory role for FTO and IRX3 in zebrafish. These findings highlight the importance of FTO and IRX3 in appetite and metabolic regulation in zebrafish.</div></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":"360 ","pages":"Article 114621"},"PeriodicalIF":2.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142462752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cui Liu , Longsheng Zhang , You Xia , Keqi Li , Jikui Wu , Junling Zhang
{"title":"Identification, expression, and function analysis of Rbpms2 splicing variants in Japanese flounder gonad","authors":"Cui Liu , Longsheng Zhang , You Xia , Keqi Li , Jikui Wu , Junling Zhang","doi":"10.1016/j.ygcen.2024.114628","DOIUrl":"10.1016/j.ygcen.2024.114628","url":null,"abstract":"<div><div>Rbpms2<em>,</em> an RNA-binding protein with multiple splicing (<em>Rbpms</em>), can interact with RNAs to involve oocyte development, thereby influencing female sex differentiation in vertebrates. Here, two splicing variants of the <em>Rbpms2</em> gene from Japanese flounder (<em>Paralichthys olivaceus</em>) were identified, namely <em>Rbpms2.1</em> and <em>Rbpms2.2</em>. The two variants exhibited 98.22 % amino acid homology, both featuring an RNA recognition motif (RRM) domain spanning positions 98–170 amino acids. They were relatively conserved throughout phylogenetic evolution. Differently, the C-terminal region of the <em>Rbpms2.1</em> contains five additional sequential amino acids (–VRDQP–) compared to <em>Rbpms2.2</em>. The real-time qPCR results demonstrated that <em>Rbpms2.1</em> and <em>Rbpms2.2</em> had relatively abundant expression in the gonads of adult Japanese flounder, with higher expression levels in the ovary compared to the testis (<em>P</em> < 0.05). <em>In situ</em> hybridization results showed strong positive expression of <em>Rbpms2</em> mRNA in oocytes at stages I-III during the V stage of ovarian development. In the testis at<!--> <!-->stage IV, the expression of <em>Rbpms2</em> mRNA was mainly concentrated on primary spermatocytes. Importantly, <em>Rbpms2</em> binding sites were found in the 3′UTR, 5′UTR, and ORF regions of the sex-related genes including <em>dmrt1</em>, <em>sox9</em>, <em>amh</em>, <em>foxl2</em>, and <em>wnt4</em>. siRNA interference and overexpression analysis of <em>Rbpms2.1</em> and <em>Rbpms2.2</em> in primary cells of the ovary and testis showed that <em>Rbpms2</em> can repress the expression of male-related genes (<em>dmrt1</em>, <em>sox9</em>, and <em>amh</em>) and significantly promote the expression of female-related genes (<em>foxl2</em> and <em>wnt4</em>). Our results revealed that <em>Rbpms2</em> may play a critical role by targeting the sex-related genes in the gonad development of Japanese flounder.</div></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":"359 ","pages":"Article 114628"},"PeriodicalIF":2.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular characterization and stage-dependent gene expression of gonadotropin receptors in Pacific bluefin tuna, Thunnus orientalis, ovarian follicles","authors":"Kentaro Higuchi , Yukinori Kazeto , Mitsuo Nyuji , Satoshi Soma , Toshinori Takashi , Kogen Okita , Takao Hayashida , Koichiro Gen","doi":"10.1016/j.ygcen.2024.114620","DOIUrl":"10.1016/j.ygcen.2024.114620","url":null,"abstract":"<div><div>To understand the physiological mechanisms by which pituitary-derived gonadotropins (Gths), follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) regulate asynchronous oocyte development, we investigated the function and expression of Fsh and Lh receptors (Fshr and Lhr, respectively) in Pacific bluefin tuna (PBT, <em>Thunnus orientalis</em>). As a first, we cloned the full-length cDNAs encoding PBT Fshr and Lhr. Recombinant PBT Fsh and Lh single-chain proteins were produced in abundance using stable CHO-DG44 cell lines and were subsequently purified from the culture medium, culminating in their yields being 87.0 and 88.2%, respectively. An <em>in vitro</em> reporter assay using homologous recombinant Gths revealed that PBT Fshr and Lhr responded strongly to their corresponding ligands in a dose-dependent manner, with no cross-activation over a wide range of concentrations. Moreover, quantitative expression analysis of Fshr and Lhr at the follicle level showed that <em>fshr</em> gene expression was highly upregulated in the ovarian follicles through vitellogenesis, while <em>lhr</em> expression was significantly upregulated and peaked in fully vitellogenic ovarian follicles. These findings suggest that asynchronous-type oocyte development is primarily attributed to the differential function and expression of Gthrs, rather than the ligand, in PBT.</div></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":"359 ","pages":"Article 114620"},"PeriodicalIF":2.1,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lauren K. Sandy , Kerry V. Fanson , Stephen R. Griffiths , Kylie A. Robert , Rupert Palme , Alicia M. Dimovski
{"title":"Non-invasive monitoring of adrenocortical activity in the Gould’s wattled bat (Chalinolobus gouldii)","authors":"Lauren K. Sandy , Kerry V. Fanson , Stephen R. Griffiths , Kylie A. Robert , Rupert Palme , Alicia M. Dimovski","doi":"10.1016/j.ygcen.2024.114619","DOIUrl":"10.1016/j.ygcen.2024.114619","url":null,"abstract":"<div><div>Although bats are the second most species-rich mammalian order, very little is known about their endocrine physiology. Glucocorticoids (GCs) are commonly associated with the stress response, but also modulate vital physiological functions which help animals adapt to their environment. Understanding normal patterns of adrenocortical activity can provide valuable insights into a species’ fitness. Non-invasive hormone monitoring via faecal samples provides an integrated measure of adrenocortical activity while minimising stress on the animal but must be properly validated to ensure reliable results. The goal of this study was to validate an enzyme immunoassay for monitoring faecal glucocorticoid metabolites (FGMs) in a common Australian insectivorous bat species, the Gould’s wattled bat (<em>Chalinolobus gouldii</em>). We compared the performance of five assays for monitoring changes in FGMs following capture and transfer of <em>C.gouldii</em> from the wild to captivity. Four of the five assays detected a significant increase in FGMs following capture, but the magnitude of the increase and consistency across individuals differed considerably. We selected the UVM-69a assay as the best performing assay to then describe normative patterns of adrenocortical activity in the species. Males had higher FGM levels than females, and juveniles had higher FGM levels than adults. Individuals with poorer body condition had higher FGM levels. We also demonstrate seasonal patterns of FGMs with higher levels in March and April corresponding with reproductive up-regulation and lower levels in May and November. Our study is the first of its kind to examine adrenocortical activity in an Australian insectivorous bat and provides a valuable tool for studying this species. Understanding adrenal function in common species such as <em>C.gouldii</em> can shed light on the physiological mechanisms facilitating survival and success in changing environments.</div></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":"359 ","pages":"Article 114619"},"PeriodicalIF":2.1,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Functional characterization of CCHamides and deorphanization of their receptors in the yellow fever mosquito, Aedes aegypti","authors":"Jinghan Tan , Susanne Neupert , Jean-Paul Paluzzi","doi":"10.1016/j.ygcen.2024.114618","DOIUrl":"10.1016/j.ygcen.2024.114618","url":null,"abstract":"<div><div>As a widely distributed anthropophilic mosquito species and vector of various arboviruses, <em>Aedes aegypti</em> poses a significant threat to human health on a global scale. Investigating mosquito neuropeptides allows us to better understand their physiology. The neuropeptides CCHamide1 (CCHa1) and CCHamide2 (CCHa2) along with their associated G protein-coupled receptors (CCHa1R and CCHa2R) were recently identified and studied across insects. However, expression profiles and physiological roles of CCHamides and their receptors in many other insects, including <em>A. aegypti</em>, remain unclear. This research aimed to quantify and localize the expression of CCHamides along with their receptors and gain insight on their physiological function in the yellow fever mosquito. RT-qPCR analysis revealed transcript abundance of CCHamides and receptors changes over development. Differential expression was also observed in tissues/organs of adult mosquitoes indicating <em>CCHa1</em> and <em>CCHa2</em> transcripts are enriched in the midgut, while receptors are expressed across various tissues. CCHamide immunoreactivity was observed in neurons in the brain and ventral nerve cord along with enteroendocrine cells in the posterior midgut adjacent to the midgut-hindgut junction, corroborating their transcript expression profiles. Using different mass spectrometrical approaches, presence of CCHamides were confirmed in the brain of both sexes, including the <em>pars intercerebralis</em> of female mosquitoes, as well as in the gut of adult mosquitoes. For chemical identification of predicted CCHamides, we analyzed brain and gut extracts by ESI-Q Exactive Orbitrap MS and resulting fragmentations confirmed CCHa1 and CCHa2 in brain and midgut samples of both male and female mosquitoes. A heterologous functional assay was used to confirm the specificity and sensitivity of the two CCHamide receptors by assessing their activation in response to diverse mosquito peptides, which confirmed CCHa1 and CCHa2 as natural ligands. Finally, using a capillary feeder (CAFE) bioassay, our results suggest that CCHa2 modulates feeding behaviour in female mosquitoes.</div></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":"359 ","pages":"Article 114618"},"PeriodicalIF":2.1,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaowen Gao , Liang Ke , Linlin Wang , Shuo Zheng , Xiangjiang Liu , Wenhao Hu , Guobing Tong , Zhong Li , Guangfu Hu
{"title":"Low-temperature-induced disruption of reproductive axis and sperm vitality via stress axis in Monopterus albus","authors":"Xiaowen Gao , Liang Ke , Linlin Wang , Shuo Zheng , Xiangjiang Liu , Wenhao Hu , Guobing Tong , Zhong Li , Guangfu Hu","doi":"10.1016/j.ygcen.2024.114617","DOIUrl":"10.1016/j.ygcen.2024.114617","url":null,"abstract":"<div><div>The ricefield eel (<em>Monopterus albus</em>) is inherently timid and highly sensitive to stress. Our previous studies have shown that low-temperature weather could significantly affect the sperm vitality of ricefield eels. This study aims to investigate the regulatory mechanism of low-temperature effects on testicular function and sperm vitality in ricefield eels. The ricefield eels were initially reared at low (10 °C) and normal (25 °C) temperatures for 24 h. Low temperatures were found to induce the expression of pituitary pro-opiomelanocortin (POMC) and testes insulin-like growth factor-binding protein 1 (IGFBP1) mRNA expression, suggesting that the reduction in sperm vitality could be attributed to the activation of the stress axis. Moreover, the results indicated a significant decrease in sperm occupancy and count in the testes, along with a reduced percentage of motile sperm. Subsequent transcriptome analysis showed substantial inhibition of reproductive hormone genes (<em>gnrh1</em>, <em>lh</em>, and <em>fsh</em>) in the brain and pituitary, and downregulation of meiosis-related genes (<em>dmc1</em>, <em>rec8</em>, and <em>sycp3</em>) in the testes. These findings suggest that low temperatures might disrupt testicular development and spermatogenesis by inhibiting the reproductive axis. Metabolomics analysis then demonstrated a significant reduction in the levels of metabolites related to glycolysis, fatty acid metabolism, and the tricarboxylic acid (TCA) cycle in the testes after low-temperature treatment. Interestingly, the expression of zona pellucida sperm-binding proteins 3 and 4 (ZP3 and ZP4), which may affect sperm vitality and spermatogenesis, was significantly induced by low temperatures in the testes. In conclusion, these findings suggested that low temperatures might affect testicular function and sperm vitality by simultaneously activating the stress axis and inhibiting the reproductive axis and energy metabolism in the testes.</div></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":"359 ","pages":"Article 114617"},"PeriodicalIF":2.1,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valerie S. Langlois (Guest Editor), Aurea Orozco (Guest Editor), Meet Zandawala (Guest Editor), Mark A. Sheridan (Guest Editor)
{"title":"Special issue of the seventh biennial meeting of the North American Society for comparative endocrinology (Sociedad Norteamericana de Endocrinología Comparada; Societé Nord-américaine de l’endocrinologie comparée)","authors":"Valerie S. Langlois (Guest Editor), Aurea Orozco (Guest Editor), Meet Zandawala (Guest Editor), Mark A. Sheridan (Guest Editor)","doi":"10.1016/j.ygcen.2024.114616","DOIUrl":"10.1016/j.ygcen.2024.114616","url":null,"abstract":"","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":"359 ","pages":"Article 114616"},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}