{"title":"Parenting in a changing environment: A long-term study of prolactin, parental effort and reproductive success in common eiders","authors":"","doi":"10.1016/j.ygcen.2024.114574","DOIUrl":"10.1016/j.ygcen.2024.114574","url":null,"abstract":"<div><p>Parental care is regulated by multiple endocrine mechanisms. Among these hormones, prolactin (PRL) is involved in the expression of parental behaviors. Despite the consensus that PRL mediates variation in parental effort with age and body condition, its role in the adjustment of parental effort to fluctuating environmental conditions, including changing predation pressure, still awaits further investigation. To shed light on this knowledge gap, we relied on a long-term monitoring of female common eiders <em>Somateria mollissima</em> (n = 1277 breeding attempts, 2012–2022) incubating under fluctuating predation risk to investigate the link between baseline PRL levels and female minimum age, body condition, clutch size, environmental parameters (predation pressure, climate, nest microhabitat) and hatching success. We predicted that PRL would be higher in older females, those in better condition or incubating larger clutches. We also predicted that females would reduce parental effort when nesting under challenging environmental conditions (high predation pressure or poor climatic conditions), translated into reduced baseline PRL levels. We also explored how variation in PRL levels, female characteristics and environmental parameters were related to hatching success. Following our predictions, PRL levels were positively associated with body condition and female age (before showing a senescent decline in the oldest breeders). However, we did not observe any population-level or individual-level reduction in PRL levels in response to increasing predation pressure. Population-level baseline PRL levels instead increased over the study period, coincident with rising predation threat, but also increasing female body condition and age. While we did not provide evidence for a direct association between baseline PRL levels and predation risk, our results support the idea that elevated baseline PRL levels promote hatching success under internal constraints (in young, inexperienced, breeders or those incubating a large clutch) or constraining environmental conditions (during years of high predation pressure or poor climatic and foraging conditions). Finally, the low repeatability of baseline PRL levels and high interannual variability highlight considerable within-individual flexibility in baseline PRL levels. Further research should explore flexibility in parental effort to changing environmental conditions, focusing on both baseline and stress-induced PRL levels.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0016648024001369/pdfft?md5=e4c9e56521c9c5ede167ab509ce6e3e7&pid=1-s2.0-S0016648024001369-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Álvaro González-Cid , Ignacio Giménez , Neil Duncan
{"title":"In vivo effect of recombinant Fsh and Lh administered to meagre (Argyrosomus regius) at the initial stages of sex differentiation","authors":"Álvaro González-Cid , Ignacio Giménez , Neil Duncan","doi":"10.1016/j.ygcen.2024.114576","DOIUrl":"10.1016/j.ygcen.2024.114576","url":null,"abstract":"<div><p>Recombinant gonadotropins, follicle stimulating (rFsh) and luteinizing hormone (rLh), offer the potential to induce gametogenesis in prepubertal fish. This study aimed to determine the <em>in vivo</em> effect of the administration of <em>Argyrosomus regius</em> rFsh and rLh on the reproductive development of prepubertal meagre juveniles at the initial stages of sexual differentiation. Juvenile meagre, 9-months old with mean weight of 219 ± 3.9 g (mean ± SEM) were randomly distributed into nine groups (n = 8 per group). Experimental groups were treated weekly with an acute injection of either rFsh or rLh. Control groups were injected with saline solution. In a 3-week experiment, different groups were administered with different doses 6, 12 or 18 µg kg<sup>−1</sup> of rFsh or rLh or saline solution. In a 6-week experiment a group was administered with 12 µg kg<sup>−1</sup> of rFsh and a second group with saline solution. The fish were held in a single 10 m<sup>3</sup> tank with natural photoperiod (Feb. – March) and temperature 16.1 ± 0.4 °C. At the start of the experiment (n = 8) and at the end of the 3-week experiment, fish were blood sampled and sacrificed. Blood was analysed for 17β-estradiol (E2) and 11-ketotestosterone (11-KT). Gonads and liver were dissected and weighed. Gonads were fixed in Bouińs solution and processed for histological analysis. Juvenile meagre at the start of the experiment were in the initial stages of sexual differentiation, indicated by the presence of the ovarian cavity or testes duct that was surrounded by undifferentiated embryonic germ stem cells and somatic cells. At the end of the 3-week experiment, there was no significant difference in gonadosomatic index (GSI) amongst control (initial and saline treated) and the experimental groups. After three weeks of application of rFsh, rLh or saline all fish presented a similar gonadal structure as at the start of the experiment. However, the incidence of sporadic developing germ cells (principally spermatogonia, spermatocytes, spermatids, but also perinucleolar stage oocytes) generally increased in rGth treated meagre. A mean of 44 % of meagre treated with rFsh or rLh presented sporadic isolated developing germ cells, mainly male cells. Plasma steroid levels of E2 decreased significantly from the start of the experiments to the end. At the end of the experiments there were no differences in plasma E2 amongst Control fish and rGth treated fish. Plasma 11-KT showed no change from the start of the experiment to week 3. However, a significant increase was observed in a proportion of the rFsh group after six weeks of treatment compared to the start of the experiment and the saline control group on week 6. The application of rFsh or rLh to meagre at the initial stages of sex differentiation did not stimulate steroid production until week six (11-KT) and had a limited, but evident effect on the development of sporadic isolated germ cells. However, we conclude that rGth,","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating the potential role of the pituitary adenylate cyclase-activating polypeptide (PACAP) in regulating the ubiquitin signaling pathway in poultry","authors":"Levente Czeglédi , Doha Mohamad Khalifeh , Gabriella Gulyas","doi":"10.1016/j.ygcen.2024.114577","DOIUrl":"10.1016/j.ygcen.2024.114577","url":null,"abstract":"<div><p>The physiological processes in animal production are regulated through biologically active molecules like peptides, proteins, and hormones identified through the development of the fundamental sciences and their application. One of the main polypeptides that plays an essential role in regulating physiological responses is the pituitary adenylate cyclase-activating polypeptide (PACAP). PACAP belongs to the glucagon/growth hormone-releasing hormone (GHRH)/vasoactive intestinal proteins (VIP) family and regulates feed intake, stress, and immune response in birds. Most of these regulations occur after PACAP stimulates the cAMP signaling pathway, which can regulate the expression of genes like MuRF1, FOXO1, Atrogin 1, and other ligases that are essential members of the ubiquitin system. On the other hand, PACAP stimulates the secretion of CRH in response to stress, activating the ubiquitin signaling pathway that plays a vital role in protein degradation and regulates oxidative stress and immune responses. Many studies conducted on rodents, mammals, and other models confirm the regulatory effects of PACAP, cAMP, and the ubiquitin pathway; however, there are no studies testing whether PACAP-induced cAMP signaling in poultry regulates the ubiquitin pathway. Besides, it would be interesting to investigate if PACAP can regulate ubiquitin signaling during stress response via CRH altered by HPA axis stimulation. Therefore, this review highlights a summary of research studies that indicate the potential interaction of the PACAP and ubiquitin signaling pathways on different molecular and physiological parameters in poultry species through the cAMP and stress signaling pathways.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0016648024001394/pdfft?md5=b347bfc0a1ef43a911f9944e8a4627e1&pid=1-s2.0-S0016648024001394-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrigendum to “Differential regulation of the luteinizing hormone genes in teleosts and tetrapods due to their distinct genomic environments – Insights into gonadotropin beta subunit evolution” [Gen. Comp. Endocrinol. 173 (2011) 253–258]","authors":"","doi":"10.1016/j.ygcen.2024.114564","DOIUrl":"10.1016/j.ygcen.2024.114564","url":null,"abstract":"","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0016648024001266/pdfft?md5=c6b39ac64132fb585ad0789df8b7f9c8&pid=1-s2.0-S0016648024001266-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elizabeth Brammer-Robbins , Jonathan R. Cowart , Monica Calderon , Elizabeth A. Burgess , Iskande V. Larkin , Christopher J. Martyniuk
{"title":"Sirenian (manatees and dugongs) reproductive endocrinology","authors":"Elizabeth Brammer-Robbins , Jonathan R. Cowart , Monica Calderon , Elizabeth A. Burgess , Iskande V. Larkin , Christopher J. Martyniuk","doi":"10.1016/j.ygcen.2024.114575","DOIUrl":"10.1016/j.ygcen.2024.114575","url":null,"abstract":"<div><p>Reproductive hormones are essential to mating systems, behavior, fertility, gestation, parturition, and lactation in mammals and understanding the role of hormones in these processes is essential for species conservation. Sirenia is a unique order of marine mammals that include manatees, dugongs, and the extinct Steller’s sea cow. Extant Sirenian species are all listed as vulnerable due to habitat loss, cold stress, boat strike trauma, harmful algal bloom toxicity, entanglements, and illegal hunting. Therefore, successful reproduction is essential to maintaining and increasing Sirenian populations. Understanding Sirenian reproductive behavior, endocrinology, and mating strategies will aid conservation and management efforts to protect and provide the proper conditions for successful reproduction. The objectives of this review were to synthesize the current knowledge regarding reproductive cycles and endocrinology of Sirenians and identify knowledge gaps for future investigation. The current literature on Sirenian reproductive physiology reports reproductive seasonality, sexual maturation, estrous cyclicity and acyclicity, pregnancy, and sex differences. However, there remain significant knowledge gaps on the cyclicity and pulsatile release of gonadotropins, maturation in females, and characterization of pregnancy hormone profiles throughout gestation. To date, there is no explanation for confirmed pattern for ovarian acyclicity, nor understanding of the function of the numerous accessory corpus luteum described in manatees. Research including a greater number of longitudinal and postmortem studies on a wider variety of wild manatee populations are important first steps. Taken together, understanding the reproductive endocrinology of these vulnerable and threatened species is critical for policy and management decisions to better inform protection initiatives.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative analysis of testicular fusion in Spodoptera litura (cutworm) and Bombyx mori (silkworm): Histological and transcriptomic insights","authors":"Yaqun Dong, Lihua Huang, Lin Liu","doi":"10.1016/j.ygcen.2024.114562","DOIUrl":"10.1016/j.ygcen.2024.114562","url":null,"abstract":"<div><p><em>Spodoptera litura</em> commonly known as the cutworm, is among the most destructive lepidopteran pests affecting over 120 plants species. The powerful destructive nature of this lepidopteran is attributable to its high reproductive capacity. The testicular fusion that occurs during metamorphosis from larvae to pupa in <em>S.litura</em> positively influences the reproductive success of the offspring. In contrast, <em>Bombyx mori</em>, the silkworm, retains separate testes throughout its life and does not undergo this fusion process. Microscopic examination reveals that during testicular fusion in <em>S.litura</em>, the peritoneal sheath becomes thinner and more translucent, whereas in <em>B.mori,</em> the analogous region thickens. The outer basement membrane in <em>S.litura</em> exhibits fractures, discontinuity, and uneven thickness accompanied by a significant presence of cellular secretions, large cell size, increased vesicles, liquid droplets, and a proliferation of rough endoplasmic reticulum and mitochondria. In contrast, the testicular peritoneal sheath of <em>B.mori</em> at comparable developmental stage exhibits minimal change. Comparative transcriptomic analysis of the testicular peritoneal sheath reveals a substantial difference in gene expression between the two species. The disparity in differential expressed genes (DEGs) is linked to an enrichment of numerous transcription factors, intracellular signaling pathways involving Ca<sup>2+</sup> and GTPase, as well as intracellular protein transport and signaling pathways. Meanwhile, structural proteins including actin, chitin-binding proteins, membrane protein fractions, cell adhesion, extracellular matrix proteins are predominantly identified. Moreover, the study highlights the enrichment of endopeptidases, serine proteases, proteolytic enzymes and matrix metalloproteins, which may play a role in the degradation of the outer membrane. Five transcription factors-<em>Slforkhead, Slproline, Slcyclic, Slsilk,</em> and <em>SlD-ETS</em> were identified, and their expression pattern were confirmed by qRT-PCR. they are candidates for participating in the regulation of testicular fusion. Our findings underscore significant morphological and trancriptomic variation in the testicular peritoneal sheath of <em>S.litura</em> compared to the silkworm, with substantial changes at the transcriptomic level coinciding with testicular fusion. The research provides valuable clues for understanding the complex mechanisms underlying this unique phenomenon in insects.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141288005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yueyue Fei , Zhonggui Bao , Qin Wang , Yihong Zhu , Jigang Lu , Linyue Ouyang , Quiqin Hu , Yan Zhou , Liangbiao Chen
{"title":"CRISPR/Cas9-induced LEAP2 and GHSR1a knockout mutant zebrafish displayed abnormal growth and impaired lipid metabolism","authors":"Yueyue Fei , Zhonggui Bao , Qin Wang , Yihong Zhu , Jigang Lu , Linyue Ouyang , Quiqin Hu , Yan Zhou , Liangbiao Chen","doi":"10.1016/j.ygcen.2024.114563","DOIUrl":"10.1016/j.ygcen.2024.114563","url":null,"abstract":"<div><p>Investigating the principles of fish fat deposition and conducting related research are current focal points in fish nutrition. This study explores the endocrine regulation of LEAP2 and GHSR1a in zebrafish by constructing mutant<!--> <!-->models and<!--> <!-->examining the effects of the endocrine factors LEAP2 and its receptor GHSR1a on zebrafish growth, feeding, and liver fat deposition. Compared to the wild type (WT), the mutation of LEAP2 results in increased feeding and decreased swimming in zebrafish. The impact is more pronounced in adult female zebrafish, characterized by increased weight, length, width, and accumulation of lipid droplets in the liver.<!--> <!-->In<!--> <!-->contrast, deficiency in GHSR1a significantly reduces the growth of male zebrafish and markedly decreases liver fat deposition.<!--> <!-->These research findings indicate the crucial roles of LEAP2 and GHSR1a in zebrafish feeding, growth, and intracellular fat metabolism. This study, for the first time, investigated the endocrine metabolic regulation functions of LEAP2 and GHSR1a in the model organism zebrafish, providing initial insights into their effects and potential mechanisms on zebrafish fat metabolism.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haiyang Yu , Xinxin Du , Xue Chen , Longxue Liu , Xubo Wang
{"title":"Transforming growth factor-β (TGF-β): A master signal pathway in teleost sex determination","authors":"Haiyang Yu , Xinxin Du , Xue Chen , Longxue Liu , Xubo Wang","doi":"10.1016/j.ygcen.2024.114561","DOIUrl":"10.1016/j.ygcen.2024.114561","url":null,"abstract":"<div><p>Sex determination and differentiation in fish has always been a hot topic in genetic breeding of aquatic animals. With the advances in next-generation sequencing (NGS) in recent years, sex chromosomes and sex determining genes can be efficiently identified in teleosts. To date, master sex determination genes have been elucidated in 114 species, of which 72 species have sex determination genes belonging to TGF-β superfamily. TGF-β is the only signaling pathway that the largest proportion of components, which including ligands (<em>amhy</em>, <em>gsdfy</em>, <em>gdf6</em>), receptors (<em>amhr</em>, <em>bmpr</em>), and regulator (<em>id2bby</em>), have opportunity recognized as a sex determination gene. In this review, we focus on the recent studies about teleost sex-determination genes within TGF-β superfamily and propose several hypotheses on how these genes regulate sex determination process. Differing from other reviews, our review specifically devotes significant attention to all members of the TGF-β signal pathway, not solely the sex determination genes within the TGF-β superfamily. However, the functions of the paralogous genes of TGF superfamily are still needed ongoing research. Further studies are required to more accurately interpret the molecular mechanism of TGF-β superfamily sex determination genes.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141184065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengmeng Yi , Xiaohan Ji , Chaoyi Chen , Zhan Gao , Shicui Zhang
{"title":"Functional characterization of growth hormone releasing hormone and its receptor in amphioxus with implication for origin of hypothalamic-pituitary axis","authors":"Mengmeng Yi , Xiaohan Ji , Chaoyi Chen , Zhan Gao , Shicui Zhang","doi":"10.1016/j.ygcen.2024.114560","DOIUrl":"10.1016/j.ygcen.2024.114560","url":null,"abstract":"<div><p>Growth hormone-releasing hormone (GHRH) has been widely shown to stimulate growth hormone (GH) production via binding to GHRH receptor GHRHR in various species of vertebrates, but information regarding the functional roles of GHRH and GHRHR in the protochordate amphioxus remains rather scarce. We showed here that two mature peptides, BjGHRH-1 and BjGHRH-2, encoded by BjGHRH precursor, and a single BjGHRHR protein were identified in the amphioxus <em>Branchiostoma. japonicum</em>. Like the distribution profiles of vertebrate GHRHs and GHRHRs, both the genes <em>Bjghrh</em> and <em>Bjghrhr</em> were widely expressed in the different tissues of amphioxus, including in the cerebral vesicle, Hatschek’s pit, neural tube, gill, hepatic caecum, notochord, testis and ovary. Moreover, both BjGHRH-1 and BjGHRH-2 interacted with BjGHRHR, and triggered the cAMP/PKA signal pathway in a dose-dependent manner. Importantly, BjGHRH-1 and BjGHRH-2 were both able to activate the expression of GH-like gene in the cells of Hatschek’s pit. These indicate that a functional vertebrate-like GHRH-GHRHR axis had already emerged in amphioxus, which is a seminal innovation making physiological divergence including reproduction, growth, metabolism, stress and osmoregulation possible during the early evolution of vertebrates.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Megan K. Freiler , Mikayla L. Deckard , Melissa R. Proffitt , G. Troy Smith
{"title":"Differential expression of steroid-related genes across electrosensory brain regions in two sexually dimorphic species of electric knifefish","authors":"Megan K. Freiler , Mikayla L. Deckard , Melissa R. Proffitt , G. Troy Smith","doi":"10.1016/j.ygcen.2024.114549","DOIUrl":"10.1016/j.ygcen.2024.114549","url":null,"abstract":"<div><p>The production of communication signals can be modulated by hormones acting on the brain regions that regulate these signals. However, less is known about how signal perception is regulated by hormones. The electrocommunication signals of weakly electric fishes are sexually dimorphic, sensitive to hormones, and vary across species. The neural circuits that regulate the production and perception of these signals are also well-characterized, and electric fishes are thus an excellent model to examine the neuroendocrine regulation of sensorimotor mechanisms of communication. We investigated (1) whether steroid-related genes are expressed in sensory brain regions that process communication signals; and (2) whether this expression differs across sexes and species that have different patterns of sexual dimorphism in their signals. <em>Apteronotus leptorhynchus</em> and <em>Apteronotus albifrons</em> produce continuous electric organ discharges (EODs) that are used for communication. Two brain regions, the electrosensory lateral line lobe (ELL) and the dorsal torus semicircularis (TSd), process inputs from electroreceptors to allow fish to detect and discriminate electrocommunication signals. We used qPCR to quantify the expression of genes for two androgen receptors (<em>ar1</em>, <em>ar2</em>), two estrogen receptors (<em>esr1</em>, <em>esr2b</em>), and aromatase (<em>cyp19a1b</em>). Four out of five steroid-related genes were expressed in both sensory brain regions, and their expression often varied between sexes and species. These results suggest that expression of steroid-related genes in the brain may differentially influence how EOD signals are encoded across species and sexes, and that gonadal steroids may coordinately regulate central circuits that control both the production and perception of EODs.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141140596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}