GigaSciencePub Date : 2025-01-06DOI: 10.1093/gigascience/giaf012
Jingmin Kang, Qingsong Li, Jie Liu, Lin Du, Peng Liu, Fuyan Liu, Yue Wang, Xunan Shen, Xujiao Luo, Ninghe Wang, Renhua Wu, Lei Song, Jizheng Wang, Xin Liu
{"title":"Exploring the cellular and molecular basis of murine cardiac development through spatiotemporal transcriptome sequencing.","authors":"Jingmin Kang, Qingsong Li, Jie Liu, Lin Du, Peng Liu, Fuyan Liu, Yue Wang, Xunan Shen, Xujiao Luo, Ninghe Wang, Renhua Wu, Lei Song, Jizheng Wang, Xin Liu","doi":"10.1093/gigascience/giaf012","DOIUrl":"10.1093/gigascience/giaf012","url":null,"abstract":"<p><strong>Background: </strong>Spatial transcriptomics is a powerful tool that integrates molecular data with spatial information, thereby facilitating a deeper comprehension of tissue morphology and cellular interactions. In our study, we utilized cutting-edge spatial transcriptome sequencing technology to explore the development of the mouse heart and construct a comprehensive spatiotemporal cell atlas of early murine cardiac development.</p><p><strong>Results: </strong>Through the analysis of this atlas, we elucidated the spatial organization of cardiac cellular lineages and their interactions during the developmental process. Notably, we observed dynamic changes in gene expression within fibroblasts and cardiomyocytes. Moreover, we identified critical genes, such as Igf2, H19, and Tcap, as well as transcription factors Tcf12 and Plagl1, which may be associated with the loss of myocardial regeneration ability during early heart development. In addition, we successfully identified marker genes, like Adamts8 and Bmp10, that can distinguish between the left and right atria.</p><p><strong>Conclusion: </strong>Our study provides novel insights into murine cardiac development and offers a valuable resource for future investigations in the field of heart research, highlighting the significance of spatial transcriptomics in understanding the complex processes of organ development.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831923/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GigaSciencePub Date : 2025-01-06DOI: 10.1093/gigascience/giaf007
Tangchao Kong, Yadong Wang, Bo Liu
{"title":"xRead: a coverage-guided approach for scalable construction of read overlapping graph.","authors":"Tangchao Kong, Yadong Wang, Bo Liu","doi":"10.1093/gigascience/giaf007","DOIUrl":"10.1093/gigascience/giaf007","url":null,"abstract":"<p><strong>Background: </strong>The development of long-read sequencing is promising for the high-quality and comprehensive de novo assembly for various species around the world. However, it is still challenging for assemblers to handle thousands of genomes, tens of gigabase-level assembly sizes, and terabase-level datasets efficiently, which is a bottleneck to large-scale de novo sequencing studies. A major cause is the read overlapping graph construction that state-of-the-art tools usually have to cost terabyte-level RAM space and tens of days for large genomes. Such lower performance and scalability are not suited to handle the numerous samples being sequenced.</p><p><strong>Findings: </strong>Herein, we propose xRead, a novel iterative overlapping graph construction approach that achieves high performance, scalability, and yield simultaneously. Under the guidance of its coverage-based model, xRead converts read-overlapping to heuristic read-mapping and incremental graph construction tasks with highly controllable RAM space and faster speed. It enables the processing of very large datasets (such as the 1.28 Tb Ambystoma mexicanum dataset) with less than 64 GB RAM and obviously lower time costs. Moreover, benchmarks suggest that it can produce highly accurate and well-connected overlapping graphs, which are also supportive of various kinds of downstream assembly strategies.</p><p><strong>Conclusions: </strong>xRead is able to break through the major bottleneck to graph construction and lays a new foundation for de novo assembly. This tool is suited to handle a large number of datasets from large genomes and may play important roles in many de novo sequencing studies.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831799/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143440619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GigaSciencePub Date : 2025-01-06DOI: 10.1093/gigascience/giaf003
Tianming Lan, Yinping Tian, Minhui Shi, Boyang Liu, Yu Lin, Yanling Xia, Yue Ma, Sunil Kumar Sahu, Qing Wang, Jun Li, Jin Chen, Fanghui Hou, Chuanling Yin, Kai Wang, Yuan Fu, Tengcheng Que, Wenjian Liu, Huan Liu, Haimeng Li, Yan Hua
{"title":"Enhancing inbreeding estimation and global conservation insights through chromosome-level assemblies of the Chinese and Malayan pangolin.","authors":"Tianming Lan, Yinping Tian, Minhui Shi, Boyang Liu, Yu Lin, Yanling Xia, Yue Ma, Sunil Kumar Sahu, Qing Wang, Jun Li, Jin Chen, Fanghui Hou, Chuanling Yin, Kai Wang, Yuan Fu, Tengcheng Que, Wenjian Liu, Huan Liu, Haimeng Li, Yan Hua","doi":"10.1093/gigascience/giaf003","DOIUrl":"10.1093/gigascience/giaf003","url":null,"abstract":"<p><p>A high-quality reference genome coupled with resequencing data is a promising strategy to address issues in conservation genomics. This has greatly enhanced the development of conservation plans for endangered species. Pangolins are fascinating animals with a variety of unique features. Unfortunately, they are the most trafficked wild animal in the world. In this study, we assembled a chromosome-scale genome with HiFi long reads and Hi-C short reads for the Chinese and Malayan pangolin and provided two new representative reference genomes for the pangolin species. We found a great improvement in the evaluation of genetic diversity and inbreeding based on these high-quality genomes and obtained different results for the detection of genome-wide extinction risks compared with genomes assembled using short reads. Moderate inbreeding and genetic diversity were reverified in these two pangolin species, except for one Malayan pangolin population with high inbreeding and low genetic diversity. Moreover, we identified a much higher inbreeding level (FROH = 0.54) in the Chinese pangolin individual from Taiwan Province compared with that from Mainland China, but more than 99.6% runs of homozygosity (ROH) fragments were restricted to less than 1 Mb, indicating that the high FROH in Taiwan Chinese pangolins may have accumulated from historical inbreeding events. Furthermore, our study is the first to detect relatively mild genetic purging in pangolin populations. These two high-quality reference genomes will provide valuable genetic resources for future studies and contribute to the protection and conservation of pangolins.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143412817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GigaSciencePub Date : 2025-01-06DOI: 10.1093/gigascience/giaf022
Lewis A G Stuart, Darren M Wells, Jonathan A Atkinson, Simon Castle-Green, Jack Walker, Michael P Pound
{"title":"High-fidelity wheat plant reconstruction using 3D Gaussian splatting and neural radiance fields.","authors":"Lewis A G Stuart, Darren M Wells, Jonathan A Atkinson, Simon Castle-Green, Jack Walker, Michael P Pound","doi":"10.1093/gigascience/giaf022","DOIUrl":"10.1093/gigascience/giaf022","url":null,"abstract":"<p><strong>Background: </strong>The reconstruction of 3-dimensional (3D) plant models can offer advantages over traditional 2-dimensional approaches by more accurately capturing the complex structure and characteristics of different crops. Conventional 3D reconstruction techniques often produce sparse or noisy representations of plants using software or are expensive to capture in hardware. Recently, view synthesis models have been developed that can generate detailed 3D scenes, and even 3D models, from only RGB images and camera poses. These models offer unparalleled accuracy but are currently data hungry, requiring large numbers of views with very accurate camera calibration.</p><p><strong>Results: </strong>In this study, we present a view synthesis dataset comprising 20 individual wheat plants captured across 6 different time frames over a 15-week growth period. We develop a camera capture system using 2 robotic arms combined with a turntable, controlled by a re-deployable and flexible image capture framework. We trained each plant instance using two recent view synthesis models: 3D Gaussian splatting (3DGS) and neural radiance fields (NeRF). Our results show that both 3DGS and NeRF produce high-fidelity reconstructed images of a plant subject from views not captured in the initial training sets. We also show that these approaches can be used to generate accurate 3D representations of these plants as point clouds, with 0.74-mm and 1.43-mm average accuracy compared with a handheld scanner for 3DGS and NeRF, respectively.</p><p><strong>Conclusion: </strong>We believe that these new methods will be transformative in the field of 3D plant phenotyping, plant reconstruction, and active vision. To further this cause, we release all robot configuration and control software, alongside our extensive multiview dataset. We also release all scripts necessary to train both 3DGS and NeRF, all trained models data, and final 3D point cloud representations. Our dataset can be accessed via https://plantimages.nottingham.ac.uk/ or https://https://doi.org/10.5524/102661. Our software can be accessed via https://github.com/Lewis-Stuart-11/3D-Plant-View-Synthesis.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945317/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143729555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"EnrichDO: a global weighted model for Disease Ontology enrichment analysis.","authors":"Haixiu Yang, Hongyu Fu, Meiyi Zhang, Yangyang Liu, Yongqun Oliver He, Chao Wang, Liang Cheng","doi":"10.1093/gigascience/giaf021","DOIUrl":"10.1093/gigascience/giaf021","url":null,"abstract":"<p><strong>Background: </strong>Disease Ontology (DO) has been widely studied in biomedical research and clinical practice to describe the roles of genes. DO enrichment analysis is an effective means to discover associations between genes and diseases. Compared to hundreds of Gene Ontology (GO)-based enrichment analysis methods, however, DO-based methods are relatively scarce, and most current DO-based approaches are term-for-term and thus are unable to solve over-enrichment problems caused by the \"true-path\" rule.</p><p><strong>Results: </strong>Here, we describe a novel double-weighted model, EnrichDO, which leverages the latest annotations of the human genome with DO terms and integrates DO graph topology on a global scale. Compared to classic enrichment methods (mainly for GO) and existing DO-based enrichment tools, EnrichDO performs better in both GO and DO enrichment analysis cases. It can accurately identify more specific terms, without ignoring the truly associated parent terms, as shown in the Alzheimer's disease (AD) case (AD ranked first). Moreover, both a simulated test and a data perturbation test validate the accuracy and robustness of EnrichDO. Finally, EnrichDO is applied to other types of datasets to expand its application, including gene expression profile datasets, a host gene set of microorganisms, and hallmark gene sets. Based on the findings reported here, EnrichDO shows significant improvement via all experimental results.</p><p><strong>Conclusions: </strong>EnrichDO provides an effective DO enrichment analysis model for gaining insight into the significance of a particular gene set in the context of disease. To increase the usability of EnrichDO, we have developed an R-based software package, which is freely available through Bioconductor (https://bioconductor.org/packages/release/bioc/html/EnrichDO.html) or at https://github.com/liangcheng-hrbmu/EnrichDO.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945307/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143729552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The molecular basis of octocoral calcification revealed by genome and skeletal proteome analyses.","authors":"Yanshuo Liang, Kuidong Xu, Junyuan Li, Jingyuan Shi, Jiehong Wei, Xiaoyu Zheng, Wanying He, Xin Zhang","doi":"10.1093/gigascience/giaf031","DOIUrl":"10.1093/gigascience/giaf031","url":null,"abstract":"<p><p>The ability of octocorals and stony corals to deposit calcium carbonate (CaCO3) has contributed to their ecological success. Whereas stony corals possess a homogeneous aragonite skeleton, octocorals have developed distinct skeletal structures composed of different CaCO3 polymorphs and a skeletal organic matrix. Nevertheless, the molecular basis of skeletal structure formation in octocorals remains inadequately understood. Here, we sequenced the genomes and skeletal proteomes of two calcite-forming octocorals, namely Paragorgia papillata and Chrysogorgia sp. The assembled genomes sizes were 618.13 Mb and 781.04 Mb for P. papillata and Chrysogorgia sp., respectively, with contig N50s of 2.67 Mb and 2.61 Mb. Comparative genomic analyses identified 162 and 285 significantly expanded gene families in the genomes of P. papillata and Chrysogorgia sp., respectively, which are primarily associated with biomineralization and immune response. Furthermore, comparative analyses of skeletal proteomes demonstrated that corals with different CaCO3 polymorphs share a fundamental toolkit comprising cadherin, von Willebrand factor type A, and carbonic anhydrase domains for calcified skeleton deposition. In contrast, collagen is abundant in the calcite-forming octocoral skeletons but occurs rarely in aragonitic stony corals. Additionally, certain collagens have developed domains related to matrix adhesion and immunity, which may confer novel genetic functions in octocoral calcification. These findings enhance our understanding of the diverse forms of coral biomineralization processes and offer preliminary insights into the formation and evolution of the octocoral skeleton.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959691/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143752101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GigaSciencePub Date : 2025-01-06DOI: 10.1093/gigascience/giae115
Yanfeng Zhou, Chenhe Wang, Binhu Wang, Dongpo Xu, Xizhao Zhang, You Ge, Shulun Jiang, Fujiang Tang, Chunhai Chen, Xuemei Li, Jianbo Jian, Yang You
{"title":"Telomere-to-telomere genome and resequencing of 254 individuals reveal evolution, genomic footprints in Asian icefish, Protosalanx chinensis.","authors":"Yanfeng Zhou, Chenhe Wang, Binhu Wang, Dongpo Xu, Xizhao Zhang, You Ge, Shulun Jiang, Fujiang Tang, Chunhai Chen, Xuemei Li, Jianbo Jian, Yang You","doi":"10.1093/gigascience/giae115","DOIUrl":"10.1093/gigascience/giae115","url":null,"abstract":"<p><p>The Asian icefish, Protosalanx chinensis, has undergone extensive colonization in various waters across China for decades due to its ecological and physiological significance as well as its economic importance in the fishery resource. Here, we decoded a telomere-to-telomere (T2T) genome for P. chinensis combining PacBio HiFi long reads and ultra-long ONT (nanopore) reads and Hi-C data. The telomere was identified in both ends of the contig/chromosome. The expanded gene associated with circadian entrainment suggests that P. chinensis may exhibit a high sensitivity to photoperiod. The contracted genes' immune-related families and DNA repair associated with positive selection in P. chinensis suggested the selection pressure during adaptive evolution. The population genetic analysis reported the genetic diversity and genomic footprints in 254 individuals from 8 different locations. The natural seawater samples can be the highest diversity and different from other freshwater and introduced populations. The divergent regions' associated genes were found to be related to the osmotic pressure system, suggesting adaptations to alkalinity and salinity. Thus, the T2T genome and genetic variation can be valuable resources for genomic footprints in P. chinensis, shedding light on its evolution, comparative genomics, and the genetic differences between natural and introduced populations.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142947478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GigaSciencePub Date : 2025-01-06DOI: 10.1093/gigascience/giaf020
Hongwoo Lee, Pil Joon Seo
{"title":"Hi-GDT: A Hi-C-based 3D gene domain analysis tool for analyzing local chromatin contacts in plants.","authors":"Hongwoo Lee, Pil Joon Seo","doi":"10.1093/gigascience/giaf020","DOIUrl":"10.1093/gigascience/giaf020","url":null,"abstract":"<p><strong>Background: </strong>Three-dimensional (3D) chromatin organization is emerging as a key factor in gene regulation in eukaryotes. Recent studies using high-resolution Hi-C analysis have explored fine-scale local chromatin contact domains in plants, as exemplified by the basic contact domains established at accessible gene border regions in Arabidopsis (Arabidopsis thaliana). However, we lack effective tools to identify these contact domains and examine their structural dynamics.</p><p><strong>Results: </strong>We developed the Hi-C-based 3D Gene Domain analysis Tool (Hi-GDT) to identify fine-scale local chromatin contact domains in plants, with a particular focus on gene borders. Hi-GDT successfully identifies local contact domains, including single-gene and multigene domains, with high reproducibility. Hi-GDT can also be used to discover local contact domains that are differentially organized in association with differences in gene expression between tissue types, genotypes, or in response to environmental stimuli.</p><p><strong>Conclusions: </strong>Hi-GDT is a valuable tool for identifying genes regulated by dynamic 3D conformational changes, expanding our understanding of the structural and functional relevance of local 3D chromatin organization in plants. Hi-GDT is publicly available at https://github.com/CDL-HongwooLee/Hi-GDT.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927400/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143673821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GigaSciencePub Date : 2025-01-06DOI: 10.1093/gigascience/giaf026
Zhenzhu Li, Hang Zong, Xiaonan Liu, Xiao Wang, Shimeng Liu, Xi Jiao, Xianqing Chen, Hao Wu, Zhuoya Liu, Zhongkai Wang, Yongqiang Wang, Yi Liu, Botong Zhou, Zihe Li, Qiuhui Du, Jing Li, Jian Cheng, Jie Bai, Xiaoxi Zhu, Yue Yang, Guichun Liu, Li Zhang, Huifeng Jiang, Wen Wang
{"title":"Phased high-quality genome of the gymnosperm Himalayan Yew assists in paclitaxel pathway exploration.","authors":"Zhenzhu Li, Hang Zong, Xiaonan Liu, Xiao Wang, Shimeng Liu, Xi Jiao, Xianqing Chen, Hao Wu, Zhuoya Liu, Zhongkai Wang, Yongqiang Wang, Yi Liu, Botong Zhou, Zihe Li, Qiuhui Du, Jing Li, Jian Cheng, Jie Bai, Xiaoxi Zhu, Yue Yang, Guichun Liu, Li Zhang, Huifeng Jiang, Wen Wang","doi":"10.1093/gigascience/giaf026","DOIUrl":"10.1093/gigascience/giaf026","url":null,"abstract":"<p><strong>Background: </strong>Taxus wallichiana is an important species for paclitaxel production. Previous genome versions for Taxus spp. have been limited by extensive gaps, hindering the complete annotation and mining of paclitaxel (known as Taxol commercially) synthesis pathway-related genes.</p><p><strong>Results: </strong>Here, we present the first phased high-quality reference genome of T. wallichiana, which significantly improves assembly quality and corrects large-scale assembly errors present in previous versions. The 2 haplotypes are 9.87 Gb and 9.98 Gb in length, respectively, and all 24 chromosomes were assembled with telomeres at both ends. Based on this high-quality genome (TWv1), we inferred that the candidate sex chromosome of T. wallichiana is chr12, and its sex determination system may follow a ZW model. Particularly, we identified and experimentally validated a batch of 2-oxoglutarate/Fe(II)-dependent dioxygenases (ODDs), which may be key C4β-C20 epoxidases in the paclitaxel synthesis pathway.</p><p><strong>Conclusions: </strong>This study not only provides a valuable data resource for gene mining in the biosynthetic pathways of secondary metabolites, such as paclitaxel, but also offers the highest-quality reference genome of gymnosperms to date for the identification of sex chromosomes, facilitating comparative genomic studies among gymnosperms.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970372/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143784428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GigaSciencePub Date : 2025-01-06DOI: 10.1093/gigascience/giae118
Chun Liu, Jianyu Zhang, Ranran Xu, Jinhui Lv, Zhu Qiao, Mingzhou Bai, Shancen Zhao, Lijuan Luo, Guodao Liu, Pandao Liu
{"title":"A chromosome-scale genome assembly of the pioneer plant Stylosanthes angustifolia: insights into genome evolution and drought adaptation.","authors":"Chun Liu, Jianyu Zhang, Ranran Xu, Jinhui Lv, Zhu Qiao, Mingzhou Bai, Shancen Zhao, Lijuan Luo, Guodao Liu, Pandao Liu","doi":"10.1093/gigascience/giae118","DOIUrl":"10.1093/gigascience/giae118","url":null,"abstract":"<p><strong>Background: </strong>Drought is a major limiting factor for plant survival and crop productivity. Stylosanthes angustifolia, a pioneer plant, exhibits remarkable drought tolerance, yet the molecular mechanisms driving its drought resistance remain largely unexplored.</p><p><strong>Results: </strong>We present a chromosome-scale reference genome of S. angustifolia, which provides insights into its genome evolution and drought tolerance mechanisms. The assembled genome is 645.88 Mb in size, containing 319.98 Mb of repetitive sequences and 36,857 protein-coding genes. The high quality of this genome assembly is demonstrated by the presence of 99.26% BUSCO and a 19.49 long terminal repeat assembly index. Evolutionary analyses revealed that S. angustifolia shares a whole-genome duplication (WGD) event with other legumes but lacks recent WGD. Additionally, S. angustifolia has undergone gene expansion through tandem duplication approximately 12.31 million years ago. Through integrative multiomics analyses, we identified 4 gene families-namely, xanthoxin dehydrogenase, 2-hydroxyisoflavanone dehydratase, patatin-related phospholipase A, and stachyose synthetase-that underwent tandem duplication and were significantly upregulated under drought stress. These gene families contribute to the biosynthesis of abscisic acid, genistein, daidzein, jasmonic acid, and stachyose, thereby enhancing drought tolerance.</p><p><strong>Conclusions: </strong>The genome assembly of S. angustifolia represents a significant advancement in understanding the genetic mechanisms underlying drought tolerance in this pioneer plant species. This genomic resource provides critical insights into the evolution of drought resistance and offers valuable genetic information for breeding programs aimed at improving drought resistance in crops.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}