Chloe Engler Hart, Yojana Gadiya, Tobias Kind, Christoph A Krettler, Matthew Gaetz, Biswapriya B Misra, David Healey, August Allen, Viswa Colluru, Daniel Domingo-Fernández
{"title":"Defining the limits of plant chemical space: challenges and estimations.","authors":"Chloe Engler Hart, Yojana Gadiya, Tobias Kind, Christoph A Krettler, Matthew Gaetz, Biswapriya B Misra, David Healey, August Allen, Viswa Colluru, Daniel Domingo-Fernández","doi":"10.1093/gigascience/giaf033","DOIUrl":null,"url":null,"abstract":"<p><p>The plant kingdom, encompassing nearly 400,000 known species, produces an immense diversity of metabolites, including primary compounds essential for survival and secondary metabolites specialized for ecological interactions. These metabolites constitute a vast and complex phytochemical space with significant potential applications in medicine, agriculture, and biotechnology. However, much of this chemical diversity remains unexplored, as only a fraction of plant species has been studied comprehensively. In this work, we estimate the size of the plant chemical space by leveraging large-scale metabolomics and literature datasets. We begin by examining the known chemical space, which, while containing at most several hundred thousand unique compounds, remains sparsely covered. Using data from over 1,000 plant species, we apply various mass spectrometry-based approaches-a formula prediction model, a de novo prediction model, a combination of library search and de novo prediction, and MS2 clustering-to estimate the number of unique structures. Our methods suggest that the number of unique compounds in the metabolomics dataset alone may already surpass existing estimates of plant chemical diversity. Finally, we project these findings across the entire plant kingdom, estimating that the total plant chemical space likely spans millions, if not more, with most still unexplored.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970369/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giaf033","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The plant kingdom, encompassing nearly 400,000 known species, produces an immense diversity of metabolites, including primary compounds essential for survival and secondary metabolites specialized for ecological interactions. These metabolites constitute a vast and complex phytochemical space with significant potential applications in medicine, agriculture, and biotechnology. However, much of this chemical diversity remains unexplored, as only a fraction of plant species has been studied comprehensively. In this work, we estimate the size of the plant chemical space by leveraging large-scale metabolomics and literature datasets. We begin by examining the known chemical space, which, while containing at most several hundred thousand unique compounds, remains sparsely covered. Using data from over 1,000 plant species, we apply various mass spectrometry-based approaches-a formula prediction model, a de novo prediction model, a combination of library search and de novo prediction, and MS2 clustering-to estimate the number of unique structures. Our methods suggest that the number of unique compounds in the metabolomics dataset alone may already surpass existing estimates of plant chemical diversity. Finally, we project these findings across the entire plant kingdom, estimating that the total plant chemical space likely spans millions, if not more, with most still unexplored.
期刊介绍:
GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.