transshla: hla呈递表位检测的混合变压器模型。

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES
Tianchi Lu, Xueying Wang, Wan Nie, Miaozhe Huo, Shuaicheng Li
{"title":"transshla: hla呈递表位检测的混合变压器模型。","authors":"Tianchi Lu, Xueying Wang, Wan Nie, Miaozhe Huo, Shuaicheng Li","doi":"10.1093/gigascience/giaf008","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Precise prediction of epitope presentation on human leukocyte antigen (HLA) molecules is crucial for advancing vaccine development and immunotherapy. Conventional HLA-peptide binding affinity prediction tools often focus on specific alleles and lack a universal approach for comprehensive HLA site analysis. This limitation hinders efficient filtering of invalid peptide segments.</p><p><strong>Results: </strong>We introduce TransHLA, a pioneering tool designed for epitope prediction across all HLA alleles, integrating Transformer and Residue CNN architectures. TransHLA utilizes the ESM2 large language model for sequence and structure embeddings, achieving high predictive accuracy. For HLA class I, it reaches an accuracy of 84.72% and an area under the curve (AUC) of 91.95% on IEDB test data. For HLA class II, it achieves 79.94% accuracy and an AUC of 88.14%. Our case studies using datasets like CEDAR and VDJdb demonstrate that TransHLA surpasses existing models in specificity and sensitivity for identifying immunogenic epitopes and neoepitopes.</p><p><strong>Conclusions: </strong>TransHLA significantly enhances vaccine design and immunotherapy by efficiently identifying broadly reactive peptides. Our resources, including data and code, are publicly accessible at https://github.com/SkywalkerLuke/TransHLA.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878767/pdf/","citationCount":"0","resultStr":"{\"title\":\"TransHLA: a Hybrid Transformer model for HLA-presented epitope detection.\",\"authors\":\"Tianchi Lu, Xueying Wang, Wan Nie, Miaozhe Huo, Shuaicheng Li\",\"doi\":\"10.1093/gigascience/giaf008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Precise prediction of epitope presentation on human leukocyte antigen (HLA) molecules is crucial for advancing vaccine development and immunotherapy. Conventional HLA-peptide binding affinity prediction tools often focus on specific alleles and lack a universal approach for comprehensive HLA site analysis. This limitation hinders efficient filtering of invalid peptide segments.</p><p><strong>Results: </strong>We introduce TransHLA, a pioneering tool designed for epitope prediction across all HLA alleles, integrating Transformer and Residue CNN architectures. TransHLA utilizes the ESM2 large language model for sequence and structure embeddings, achieving high predictive accuracy. For HLA class I, it reaches an accuracy of 84.72% and an area under the curve (AUC) of 91.95% on IEDB test data. For HLA class II, it achieves 79.94% accuracy and an AUC of 88.14%. Our case studies using datasets like CEDAR and VDJdb demonstrate that TransHLA surpasses existing models in specificity and sensitivity for identifying immunogenic epitopes and neoepitopes.</p><p><strong>Conclusions: </strong>TransHLA significantly enhances vaccine design and immunotherapy by efficiently identifying broadly reactive peptides. Our resources, including data and code, are publicly accessible at https://github.com/SkywalkerLuke/TransHLA.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878767/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giaf008\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giaf008","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:人类白细胞抗原(HLA)分子表位呈递的精确预测对于推进疫苗开发和免疫治疗至关重要。传统的HLA肽结合亲和预测工具往往侧重于特定的等位基因,缺乏一种全面的HLA位点分析的通用方法。这一限制阻碍了无效肽段的有效过滤。结果:我们介绍了TransHLA,这是一个开创性的工具,旨在预测所有HLA等位基因的表位,集成了Transformer和Residue CNN架构。TransHLA利用ESM2大语言模型进行序列和结构嵌入,实现了较高的预测精度。对于HLA I类,该方法在IEDB检测数据上的准确率为84.72%,曲线下面积(AUC)为91.95%。对于HLA II类,准确率为79.94%,AUC为88.14%。我们使用CEDAR和VDJdb等数据集进行的案例研究表明,TransHLA在识别免疫原性表位和新表位的特异性和敏感性方面优于现有模型。结论:TransHLA通过有效识别广泛反应性肽,显著提高了疫苗设计和免疫治疗水平。我们的资源,包括数据和代码,都可以在https://github.com/SkywalkerLuke/TransHLA上公开访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TransHLA: a Hybrid Transformer model for HLA-presented epitope detection.

Background: Precise prediction of epitope presentation on human leukocyte antigen (HLA) molecules is crucial for advancing vaccine development and immunotherapy. Conventional HLA-peptide binding affinity prediction tools often focus on specific alleles and lack a universal approach for comprehensive HLA site analysis. This limitation hinders efficient filtering of invalid peptide segments.

Results: We introduce TransHLA, a pioneering tool designed for epitope prediction across all HLA alleles, integrating Transformer and Residue CNN architectures. TransHLA utilizes the ESM2 large language model for sequence and structure embeddings, achieving high predictive accuracy. For HLA class I, it reaches an accuracy of 84.72% and an area under the curve (AUC) of 91.95% on IEDB test data. For HLA class II, it achieves 79.94% accuracy and an AUC of 88.14%. Our case studies using datasets like CEDAR and VDJdb demonstrate that TransHLA surpasses existing models in specificity and sensitivity for identifying immunogenic epitopes and neoepitopes.

Conclusions: TransHLA significantly enhances vaccine design and immunotherapy by efficiently identifying broadly reactive peptides. Our resources, including data and code, are publicly accessible at https://github.com/SkywalkerLuke/TransHLA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信