定义植物化学空间的极限:挑战和估计。

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES
Chloe Engler Hart, Yojana Gadiya, Tobias Kind, Christoph A Krettler, Matthew Gaetz, Biswapriya B Misra, David Healey, August Allen, Viswa Colluru, Daniel Domingo-Fernández
{"title":"定义植物化学空间的极限:挑战和估计。","authors":"Chloe Engler Hart, Yojana Gadiya, Tobias Kind, Christoph A Krettler, Matthew Gaetz, Biswapriya B Misra, David Healey, August Allen, Viswa Colluru, Daniel Domingo-Fernández","doi":"10.1093/gigascience/giaf033","DOIUrl":null,"url":null,"abstract":"<p><p>The plant kingdom, encompassing nearly 400,000 known species, produces an immense diversity of metabolites, including primary compounds essential for survival and secondary metabolites specialized for ecological interactions. These metabolites constitute a vast and complex phytochemical space with significant potential applications in medicine, agriculture, and biotechnology. However, much of this chemical diversity remains unexplored, as only a fraction of plant species has been studied comprehensively. In this work, we estimate the size of the plant chemical space by leveraging large-scale metabolomics and literature datasets. We begin by examining the known chemical space, which, while containing at most several hundred thousand unique compounds, remains sparsely covered. Using data from over 1,000 plant species, we apply various mass spectrometry-based approaches-a formula prediction model, a de novo prediction model, a combination of library search and de novo prediction, and MS2 clustering-to estimate the number of unique structures. Our methods suggest that the number of unique compounds in the metabolomics dataset alone may already surpass existing estimates of plant chemical diversity. Finally, we project these findings across the entire plant kingdom, estimating that the total plant chemical space likely spans millions, if not more, with most still unexplored.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970369/pdf/","citationCount":"0","resultStr":"{\"title\":\"Defining the limits of plant chemical space: challenges and estimations.\",\"authors\":\"Chloe Engler Hart, Yojana Gadiya, Tobias Kind, Christoph A Krettler, Matthew Gaetz, Biswapriya B Misra, David Healey, August Allen, Viswa Colluru, Daniel Domingo-Fernández\",\"doi\":\"10.1093/gigascience/giaf033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The plant kingdom, encompassing nearly 400,000 known species, produces an immense diversity of metabolites, including primary compounds essential for survival and secondary metabolites specialized for ecological interactions. These metabolites constitute a vast and complex phytochemical space with significant potential applications in medicine, agriculture, and biotechnology. However, much of this chemical diversity remains unexplored, as only a fraction of plant species has been studied comprehensively. In this work, we estimate the size of the plant chemical space by leveraging large-scale metabolomics and literature datasets. We begin by examining the known chemical space, which, while containing at most several hundred thousand unique compounds, remains sparsely covered. Using data from over 1,000 plant species, we apply various mass spectrometry-based approaches-a formula prediction model, a de novo prediction model, a combination of library search and de novo prediction, and MS2 clustering-to estimate the number of unique structures. Our methods suggest that the number of unique compounds in the metabolomics dataset alone may already surpass existing estimates of plant chemical diversity. Finally, we project these findings across the entire plant kingdom, estimating that the total plant chemical space likely spans millions, if not more, with most still unexplored.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970369/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giaf033\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giaf033","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

植物界包括近40万种已知物种,产生的代谢物种类繁多,包括生存所必需的初级化合物和专门用于生态相互作用的次级代谢物。这些代谢物构成了一个巨大而复杂的植物化学空间,在医学、农业和生物技术方面具有重要的潜在应用。然而,这种化学多样性的大部分仍未被探索,因为只有一小部分植物物种得到了全面的研究。在这项工作中,我们通过利用大规模代谢组学和文献数据集来估计植物化学空间的大小。我们首先考察已知的化学空间,它虽然最多含有几十万种独特的化合物,但仍然稀疏地覆盖着。利用来自1000多种植物物种的数据,我们应用了各种基于质谱的方法——公式预测模型、从头预测模型、库搜索和从头预测的组合以及MS2聚类——来估计独特结构的数量。我们的方法表明,仅代谢组学数据集中独特化合物的数量可能已经超过了现有的植物化学多样性估计。最后,我们将这些发现预测到整个植物王国,估计整个植物化学空间可能跨越数百万,如果不是更多的话,其中大多数仍未被探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defining the limits of plant chemical space: challenges and estimations.

The plant kingdom, encompassing nearly 400,000 known species, produces an immense diversity of metabolites, including primary compounds essential for survival and secondary metabolites specialized for ecological interactions. These metabolites constitute a vast and complex phytochemical space with significant potential applications in medicine, agriculture, and biotechnology. However, much of this chemical diversity remains unexplored, as only a fraction of plant species has been studied comprehensively. In this work, we estimate the size of the plant chemical space by leveraging large-scale metabolomics and literature datasets. We begin by examining the known chemical space, which, while containing at most several hundred thousand unique compounds, remains sparsely covered. Using data from over 1,000 plant species, we apply various mass spectrometry-based approaches-a formula prediction model, a de novo prediction model, a combination of library search and de novo prediction, and MS2 clustering-to estimate the number of unique structures. Our methods suggest that the number of unique compounds in the metabolomics dataset alone may already surpass existing estimates of plant chemical diversity. Finally, we project these findings across the entire plant kingdom, estimating that the total plant chemical space likely spans millions, if not more, with most still unexplored.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信