大麦基因库核心收集的高质量表型和基因型数据集解锁未开发的遗传多样性。

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES
Zhihui Yuan, Maximilian Rembe, Martin Mascher, Nils Stein, Axel Himmelbach, Murukarthick Jayakodi, Andreas Börner, Klaus Oldach, Ahmed Jahoor, Jens Due Jensen, Julia Rudloff, Viktoria-Elisabeth Dohrendorf, Luisa Pauline Kuhfus, Emmanuelle Dyrszka, Matthieu Conte, Frederik Hinz, Salim Trouchaud, Jochen C Reif, Samira El Hanafi
{"title":"大麦基因库核心收集的高质量表型和基因型数据集解锁未开发的遗传多样性。","authors":"Zhihui Yuan, Maximilian Rembe, Martin Mascher, Nils Stein, Axel Himmelbach, Murukarthick Jayakodi, Andreas Börner, Klaus Oldach, Ahmed Jahoor, Jens Due Jensen, Julia Rudloff, Viktoria-Elisabeth Dohrendorf, Luisa Pauline Kuhfus, Emmanuelle Dyrszka, Matthieu Conte, Frederik Hinz, Salim Trouchaud, Jochen C Reif, Samira El Hanafi","doi":"10.1093/gigascience/giae121","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Genebanks around the globe serve as valuable repositories of genetic diversity, offering not only access to a broad spectrum of plant material but also critical resources for enhancing crop resilience, advancing scientific research, and supporting global food security. To this end, traditional genebanks are evolving into biodigital resource centers where the integration of phenotypic and genotypic data for accessions can drive more informed decision-making, optimize resource allocation, and unlock new opportunities for plant breeding and research. However, the curation and availability of interoperable phenotypic and genotypic data for genebank accessions is still in its infancy and represents an obstacle to rapid scientific discoveries in this field. Therefore, effectively promoting FAIR (i.e., findable, accessible, interoperable, and reusable) access to these data is vital for maximizing the potential of genebanks and driving progress in agricultural innovation.</p><p><strong>Findings: </strong>Here we provide whole genome sequencing data of 812 barley (Hordeum vulgare L.) plant genetic resources and 298 European elite materials released between 1949 and 2021, as well as the phenotypic data for 4 disease resistance traits and 3 agronomic traits. The robustness of the investigated traits and the interoperability of genomic and phenotypic data were assessed in the current publication, aiming to make this panel publicly available as a resource for future genetic research in barley.</p><p><strong>Conclusions: </strong>The data showed broad phenotypic variability and high association mapping potential, offering a key resource for identifying genebank donors with untapped genes to advance barley breeding while safeguarding genetic diversity.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811526/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-quality phenotypic and genotypic dataset of barley genebank core collection to unlock untapped genetic diversity.\",\"authors\":\"Zhihui Yuan, Maximilian Rembe, Martin Mascher, Nils Stein, Axel Himmelbach, Murukarthick Jayakodi, Andreas Börner, Klaus Oldach, Ahmed Jahoor, Jens Due Jensen, Julia Rudloff, Viktoria-Elisabeth Dohrendorf, Luisa Pauline Kuhfus, Emmanuelle Dyrszka, Matthieu Conte, Frederik Hinz, Salim Trouchaud, Jochen C Reif, Samira El Hanafi\",\"doi\":\"10.1093/gigascience/giae121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Genebanks around the globe serve as valuable repositories of genetic diversity, offering not only access to a broad spectrum of plant material but also critical resources for enhancing crop resilience, advancing scientific research, and supporting global food security. To this end, traditional genebanks are evolving into biodigital resource centers where the integration of phenotypic and genotypic data for accessions can drive more informed decision-making, optimize resource allocation, and unlock new opportunities for plant breeding and research. However, the curation and availability of interoperable phenotypic and genotypic data for genebank accessions is still in its infancy and represents an obstacle to rapid scientific discoveries in this field. Therefore, effectively promoting FAIR (i.e., findable, accessible, interoperable, and reusable) access to these data is vital for maximizing the potential of genebanks and driving progress in agricultural innovation.</p><p><strong>Findings: </strong>Here we provide whole genome sequencing data of 812 barley (Hordeum vulgare L.) plant genetic resources and 298 European elite materials released between 1949 and 2021, as well as the phenotypic data for 4 disease resistance traits and 3 agronomic traits. The robustness of the investigated traits and the interoperability of genomic and phenotypic data were assessed in the current publication, aiming to make this panel publicly available as a resource for future genetic research in barley.</p><p><strong>Conclusions: </strong>The data showed broad phenotypic variability and high association mapping potential, offering a key resource for identifying genebank donors with untapped genes to advance barley breeding while safeguarding genetic diversity.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811526/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giae121\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae121","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:全球基因库是遗传多样性的宝贵资源库,不仅提供广泛的植物材料,而且为提高作物抗灾能力、推进科学研究和支持全球粮食安全提供重要资源。为此,传统基因库正在演变为生物数字资源中心,在那里,表型和基因型数据的整合可以推动更明智的决策,优化资源配置,并为植物育种和研究开辟新的机会。然而,基因库中可互操作的表型和基因型数据的管理和可用性仍处于起步阶段,这对该领域的快速科学发现构成了障碍。因此,有效促进这些数据的公平获取(即可查找、可获取、可互操作和可重复使用)对于最大限度地发挥基因库的潜力和推动农业创新的进展至关重要。结果:利用1949 - 2021年发布的812份大麦(Hordeum vulgare L.)植物遗传资源和298份欧洲优质材料的全基因组测序数据,以及4个抗病性状和3个农艺性状的表型数据。在当前的出版物中评估了所调查性状的稳健性以及基因组和表型数据的互操作性,旨在使该小组公开可用,作为未来大麦遗传研究的资源。结论:数据显示了广泛的表型变异性和高关联定位潜力,为鉴定未开发基因的基因库供体提供了关键资源,以推进大麦育种,同时保护遗传多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-quality phenotypic and genotypic dataset of barley genebank core collection to unlock untapped genetic diversity.

Background: Genebanks around the globe serve as valuable repositories of genetic diversity, offering not only access to a broad spectrum of plant material but also critical resources for enhancing crop resilience, advancing scientific research, and supporting global food security. To this end, traditional genebanks are evolving into biodigital resource centers where the integration of phenotypic and genotypic data for accessions can drive more informed decision-making, optimize resource allocation, and unlock new opportunities for plant breeding and research. However, the curation and availability of interoperable phenotypic and genotypic data for genebank accessions is still in its infancy and represents an obstacle to rapid scientific discoveries in this field. Therefore, effectively promoting FAIR (i.e., findable, accessible, interoperable, and reusable) access to these data is vital for maximizing the potential of genebanks and driving progress in agricultural innovation.

Findings: Here we provide whole genome sequencing data of 812 barley (Hordeum vulgare L.) plant genetic resources and 298 European elite materials released between 1949 and 2021, as well as the phenotypic data for 4 disease resistance traits and 3 agronomic traits. The robustness of the investigated traits and the interoperability of genomic and phenotypic data were assessed in the current publication, aiming to make this panel publicly available as a resource for future genetic research in barley.

Conclusions: The data showed broad phenotypic variability and high association mapping potential, offering a key resource for identifying genebank donors with untapped genes to advance barley breeding while safeguarding genetic diversity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信