{"title":"Mutation impact on mRNA versus protein expression across human cancers.","authors":"Yuqi Liu, Abdulkadir Elmas, Kuan-Lin Huang","doi":"10.1093/gigascience/giae113","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cancer mutations are often assumed to alter proteins, thus promoting tumorigenesis. However, how mutations affect protein expression-in addition to gene expression-has rarely been systematically investigated. This is significant as mRNA and protein levels frequently show only moderate correlation, driven by factors such as translation efficiency and protein degradation. Proteogenomic datasets from large tumor cohorts provide an opportunity to systematically analyze the effects of somatic mutations on mRNA and protein abundance and identify mutations with distinct impacts on these molecular levels.</p><p><strong>Results: </strong>We conduct a comprehensive analysis of mutation impacts on mRNA- and protein-level expressions of 953 cancer cases with paired genomics and global proteomic profiling across 6 cancer types. Protein-level impacts are validated for 47.2% of the somatic expression quantitative trait loci (seQTLs), including CDH1 and MSH3 truncations, as well as other mutations from likely \"long-tail\" driver genes. Devising a statistical pipeline for identifying somatic protein-specific QTLs (spsQTLs), we reveal several gene mutations, including NF1 and MAP2K4 truncations and TP53 missenses showing disproportional influence on protein abundance not readily explained by transcriptomics. Cross-validating with data from massively parallel assays of variant effects (MAVE), TP53 missenses associated with high tumor TP53 proteins are more likely to be experimentally confirmed as functional.</p><p><strong>Conclusion: </strong>This study reveals that somatic mutations can exhibit distinct impacts on mRNA and protein levels, underscoring the necessity of integrating proteogenomic data to comprehensively identify functionally significant cancer mutations. These insights provide a framework for prioritizing mutations for further functional validation and therapeutic targeting.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702362/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae113","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cancer mutations are often assumed to alter proteins, thus promoting tumorigenesis. However, how mutations affect protein expression-in addition to gene expression-has rarely been systematically investigated. This is significant as mRNA and protein levels frequently show only moderate correlation, driven by factors such as translation efficiency and protein degradation. Proteogenomic datasets from large tumor cohorts provide an opportunity to systematically analyze the effects of somatic mutations on mRNA and protein abundance and identify mutations with distinct impacts on these molecular levels.
Results: We conduct a comprehensive analysis of mutation impacts on mRNA- and protein-level expressions of 953 cancer cases with paired genomics and global proteomic profiling across 6 cancer types. Protein-level impacts are validated for 47.2% of the somatic expression quantitative trait loci (seQTLs), including CDH1 and MSH3 truncations, as well as other mutations from likely "long-tail" driver genes. Devising a statistical pipeline for identifying somatic protein-specific QTLs (spsQTLs), we reveal several gene mutations, including NF1 and MAP2K4 truncations and TP53 missenses showing disproportional influence on protein abundance not readily explained by transcriptomics. Cross-validating with data from massively parallel assays of variant effects (MAVE), TP53 missenses associated with high tumor TP53 proteins are more likely to be experimentally confirmed as functional.
Conclusion: This study reveals that somatic mutations can exhibit distinct impacts on mRNA and protein levels, underscoring the necessity of integrating proteogenomic data to comprehensively identify functionally significant cancer mutations. These insights provide a framework for prioritizing mutations for further functional validation and therapeutic targeting.
期刊介绍:
GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.