Mutation impact on mRNA versus protein expression across human cancers.

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES
Yuqi Liu, Abdulkadir Elmas, Kuan-Lin Huang
{"title":"Mutation impact on mRNA versus protein expression across human cancers.","authors":"Yuqi Liu, Abdulkadir Elmas, Kuan-Lin Huang","doi":"10.1093/gigascience/giae113","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cancer mutations are often assumed to alter proteins, thus promoting tumorigenesis. However, how mutations affect protein expression-in addition to gene expression-has rarely been systematically investigated. This is significant as mRNA and protein levels frequently show only moderate correlation, driven by factors such as translation efficiency and protein degradation. Proteogenomic datasets from large tumor cohorts provide an opportunity to systematically analyze the effects of somatic mutations on mRNA and protein abundance and identify mutations with distinct impacts on these molecular levels.</p><p><strong>Results: </strong>We conduct a comprehensive analysis of mutation impacts on mRNA- and protein-level expressions of 953 cancer cases with paired genomics and global proteomic profiling across 6 cancer types. Protein-level impacts are validated for 47.2% of the somatic expression quantitative trait loci (seQTLs), including CDH1 and MSH3 truncations, as well as other mutations from likely \"long-tail\" driver genes. Devising a statistical pipeline for identifying somatic protein-specific QTLs (spsQTLs), we reveal several gene mutations, including NF1 and MAP2K4 truncations and TP53 missenses showing disproportional influence on protein abundance not readily explained by transcriptomics. Cross-validating with data from massively parallel assays of variant effects (MAVE), TP53 missenses associated with high tumor TP53 proteins are more likely to be experimentally confirmed as functional.</p><p><strong>Conclusion: </strong>This study reveals that somatic mutations can exhibit distinct impacts on mRNA and protein levels, underscoring the necessity of integrating proteogenomic data to comprehensively identify functionally significant cancer mutations. These insights provide a framework for prioritizing mutations for further functional validation and therapeutic targeting.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702362/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae113","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cancer mutations are often assumed to alter proteins, thus promoting tumorigenesis. However, how mutations affect protein expression-in addition to gene expression-has rarely been systematically investigated. This is significant as mRNA and protein levels frequently show only moderate correlation, driven by factors such as translation efficiency and protein degradation. Proteogenomic datasets from large tumor cohorts provide an opportunity to systematically analyze the effects of somatic mutations on mRNA and protein abundance and identify mutations with distinct impacts on these molecular levels.

Results: We conduct a comprehensive analysis of mutation impacts on mRNA- and protein-level expressions of 953 cancer cases with paired genomics and global proteomic profiling across 6 cancer types. Protein-level impacts are validated for 47.2% of the somatic expression quantitative trait loci (seQTLs), including CDH1 and MSH3 truncations, as well as other mutations from likely "long-tail" driver genes. Devising a statistical pipeline for identifying somatic protein-specific QTLs (spsQTLs), we reveal several gene mutations, including NF1 and MAP2K4 truncations and TP53 missenses showing disproportional influence on protein abundance not readily explained by transcriptomics. Cross-validating with data from massively parallel assays of variant effects (MAVE), TP53 missenses associated with high tumor TP53 proteins are more likely to be experimentally confirmed as functional.

Conclusion: This study reveals that somatic mutations can exhibit distinct impacts on mRNA and protein levels, underscoring the necessity of integrating proteogenomic data to comprehensively identify functionally significant cancer mutations. These insights provide a framework for prioritizing mutations for further functional validation and therapeutic targeting.

求助全文
约1分钟内获得全文 求助全文
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信