{"title":"Novel fungal diversity: A new prospect for the commercial production of future anti-cancer compounds","authors":"Pradeep Kumar , Aparajita Sharma , Gurpreet Kaur Bamrah , Kwon-Young Choi","doi":"10.1016/j.fbr.2023.100355","DOIUrl":"https://doi.org/10.1016/j.fbr.2023.100355","url":null,"abstract":"<div><p>Cancer is a multifaceted disease that closes the curtains of life of infected individuals globally. By 2030, it is predicted that there will be a rise in new cancer cases and cancer deaths of up to 26 million and 17 million per year, respectively. Growing demand for chemotherapy over the past few years and a constrained supply of different anti-cancer drugs have ultimately driven up the price of various anticancerous drugs available in the clinical market. In order to address the widespread concerns about increasing cancer cases and the current costs of chemotherapy, researchers have explored extreme fungal diversity, which has significant source for the sustainable alternative production of anti-cancerous agents with higher yields, lower production costs, and less time consumption. In addition to extremophilic bacteria, which have been most extensively studied, extremophilic fungi are also ubiquitous but have received less attention in the past as a source of novel bioactive compounds<span><span>. Along with the diversity of extremophilic fungi, endophytic fungi<span> also hold out a new, hope for the eventual finding of cancer treatments. The major components of novel fungi exhibiting anti-cancerous effects are alkaloids, terpenoids, glycosides<span>, saponin, peptides, steroids, phenols, quinones, and </span></span></span>flavonoids. Therefore, the focus of the current review is on the reported anti-cancerous compounds produced by novel extremophilic and endophytic fungi, which offers a promising prospect for their bench-scale commercial production. The prospects and constraints for further clinical development along with the cost analysis of available commercial drugs in comparison to those derived from fungi also discussed.</span></p></div>","PeriodicalId":12563,"journal":{"name":"Fungal Biology Reviews","volume":"48 ","pages":"Article 100355"},"PeriodicalIF":6.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139109209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhi-Feng Zhang , Fang Liu , Li-Rui Liu , Meng Li , Lei Cai , Shuangping Liu , Jian Mao
{"title":"Culturing the uncultured marine fungi in the omics age: Opportunities and challenges","authors":"Zhi-Feng Zhang , Fang Liu , Li-Rui Liu , Meng Li , Lei Cai , Shuangping Liu , Jian Mao","doi":"10.1016/j.fbr.2023.100353","DOIUrl":"10.1016/j.fbr.2023.100353","url":null,"abstract":"<div><p>Fungi are ubiquitous in all kinds of ecosystems with key ecological roles, while less than 10% of them have been described, of which, only about 1.2% are from marine habitats<span>. Although the advance of next-generation sequencing has unquestionably improved our understanding of marine fungi<span>, living cultures of marine fungi are important for studying the cell biology, ecological roles and evolution of microorganisms. In recent years, a number of efficient cultivation strategies, technologies, and devices have been newly developed, most of which were designed for prokaryotes and have been poorly applied to marine fungi. In this review, we give a brief discussion on the factors that may affect the isolation and cultivation of novel microorganisms, and review the omics-based innovative methods for the culturomics or targeted isolation. At last, we discuss the limitations of these approaches and their application potential on isolation and cultivation of marine fungi.</span></span></p></div>","PeriodicalId":12563,"journal":{"name":"Fungal Biology Reviews","volume":"48 ","pages":"Article 100353"},"PeriodicalIF":6.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139092898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isidora Silva-Valderrama , José-Ramón Úrbez-Torres , T. Jonathan Davies
{"title":"From host to host: The taxonomic and geographic expansion of Botryosphaeriaceae","authors":"Isidora Silva-Valderrama , José-Ramón Úrbez-Torres , T. Jonathan Davies","doi":"10.1016/j.fbr.2023.100352","DOIUrl":"10.1016/j.fbr.2023.100352","url":null,"abstract":"<div><p><span>Fungal pathogens are responsible for 30% of emerging infectious diseases (EIDs) in plants. The risk of a pathogen emerging on a new host is strongly tied to its host breadth; however, the determinants of host range are still poorly understood. Here, we explore the factors that shape host breadth of plant pathogens within </span><span><em>Botryosphaeriaceae</em></span><span>, a fungal family associated with several devastating diseases in economically important crops. While most host plants are associated with just one or a few fungal species, some hosts appear to be susceptible to infection by multiple fungi. However, the variation in the number of fungal taxa recorded across hosts is not easily explained by heritable plant traits. Nevertheless, we reveal strong evolutionary conservatism in host breadth, with most fungi infecting closely related host plants, but with some notable exceptions that seem to have escaped phylogenetic constraints on host range. Recent anthropogenic movement of plants, including widespread planting of crops, has provided new opportunities for pathogen spillover. We suggest that constraints to pathogen distributions will likely be further disrupted by climate change, and we may see future emergence events in regions where hosts are present but current climate is unfavorable.</span></p></div>","PeriodicalId":12563,"journal":{"name":"Fungal Biology Reviews","volume":"48 ","pages":"Article 100352"},"PeriodicalIF":6.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138631748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular, physiological, and biochemical properties of sclerotia metamorphosis in Rhizoctonia solani","authors":"Zohreh Nasimi , Jorge Barriuso , Tajalli Keshavarz , Aiping Zheng","doi":"10.1016/j.fbr.2023.100351","DOIUrl":"https://doi.org/10.1016/j.fbr.2023.100351","url":null,"abstract":"<div><p><span><em>Rhizoctonia solani</em></span><span> Kuhn (Basidiomycota, Cantharellales) is the main causal agent of rice sheath blight (RSB), which causes serious yield losses worldwide. The lack of rice varieties with resistance against RSB, which has a high sclerotia (dense masses of hyphal cells that function as compact survival structures in the fungal life cycle, enabling the fungus to endure adverse conditions and serve as reservoirs for subsequent growth and reproduction) survival rate, and the wide host range of </span><em>R. solani</em>, create basic challenges in the control of RSB. Overwinter sclerotium is the primary source of infection during the tillering stage of rice growth. In <em>R. solani</em><span><span>, a loose type of sclerotia is present. The sclerotia are primarily formed of compact masses of monilioid cells, but they may also be composed of undifferentiated hyphae. Three stages of sclerotial metamorphosis process are based on phenotypic changes, including the mycelium stage, the initial sclerotia stage (formation of monilioid cells), and sclerotia maturation. The metamorphosis of sclerotia involves the energy metabolism pathways and </span>signal transduction pathways in the cell. In addition, there is evidence that the expression of genes encoding cell cycle activities may be important for sclerotia formation. During sclerotia metamorphosis, </span><em>R. solani</em><span><span> significantly expresses genes that encode antioxidants and respond to stimuli. The oxidative bursts begin in the initial sclerotia metamorphosis stage; at this time, reactive oxygen species (ROS) are mostly produced at the hyphal branches. In this sense, two classes of proteins related to glycosyltransferases B and the </span>RNA recognition motif superfamily play a critical role in the sclerotial metamorphosis process in </span><em>R. solani</em><span> as scavengers of free radicals. The analysis of metabolic differences during sclerotia metamorphosis indicates that the NO metabolism may play an important role in sclerotia metamorphosis. Moreover, an increase in glycerophosphoethanolamines (PE) and glycerophosphoserines (PS) levels may indicate an advanced state of differentiation in mature </span><em>R. solani</em> sclerotia. Understanding the mechanisms involved in the sclerotial metamorphosis of <em>R. solani</em> can introduce new strategies for the management of RSB. In this review, we discuss the putative signaling and regulation mechanisms (such as quorum sensing) involved in the metamorphosis of sclerotia.</p></div>","PeriodicalId":12563,"journal":{"name":"Fungal Biology Reviews","volume":"48 ","pages":"Article 100351"},"PeriodicalIF":6.0,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138475382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insights into the role of sphingolipids in antifungal drug resistance","authors":"Sapna Kalra, Sunita Tanwar, Vinay Kumar Bari","doi":"10.1016/j.fbr.2023.100342","DOIUrl":"https://doi.org/10.1016/j.fbr.2023.100342","url":null,"abstract":"<div><p>Sphingolipids are major constituents of the plasma membrane that can act as structural and signalling molecules in diverse organisms such as animals, plants, and fungi. The metabolism of sphingolipids in fungi has gained increasing attention due to its relevance in the context of pathogenicity and therapeutic intervention for fungal infections. Humans are susceptible to a variety of fungal infections, which can range from superficial infections on the skin and mucosal surfaces to life-threatening systemic and invasive infections. Additionally, immunocompromised individuals are more prone to developing systemic infections caused by <em>Candida, Aspergillus</em>, and <em>Cryptococcus</em> spp., which are difficult to treat and have a high risk of morbidity and mortality. Several antifungal drugs have been given clinical approval to treat systemic and invasive fungal infections, however, pathogenic fungi have the intrinsic capacity to evolve different resistance mechanisms. In recent years, sphingolipid molecules and their regulators have become significant factors in the pathogenesis and multi-drug resistance. Therefore, sphingolipid pathway inhibitors could be used either alone or in combination with existing antifungal drugs for the effective prevention of virulence, and pathogenesis or to kill the pathogenic fungi. In this review, we address the impact of sphingolipid metabolism and its regulators on antifungal drug resistance, as well as how they can be effectively targeted to improve the efficacy of currently available antifungal drugs.</p></div>","PeriodicalId":12563,"journal":{"name":"Fungal Biology Reviews","volume":"47 ","pages":"Article 100342"},"PeriodicalIF":6.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1749461323000489/pdfft?md5=3aebb26d239c0c29bb66338e9ec9dfd2&pid=1-s2.0-S1749461323000489-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138448945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photogrammetry: A New Tool for Fungi?","authors":"Edward Dearberg , Nathan Smith","doi":"10.1016/j.fbr.2023.100341","DOIUrl":"https://doi.org/10.1016/j.fbr.2023.100341","url":null,"abstract":"<div><p>Representation of fungal sporocarps is a vital part of field mycology, fungal ecology, and fungal taxonomy. This technical focus article discusses the recent developments in photogrammetry—a technique for building three-dimensional models of objects. We present the results of their initial tests in photogrammetry using dried fungal material, highlighting improvements in the methodology that increase the utility and accessibility of the technique—principally the ability to build the models using only a mobile phone—and discuss the application of photogrammetry to various field in mycology including fungal taxonomy and ecology.</p></div>","PeriodicalId":12563,"journal":{"name":"Fungal Biology Reviews","volume":"47 ","pages":"Article 100341"},"PeriodicalIF":6.0,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1749461323000477/pdfft?md5=373c7864d1127faf3b7f7989e43363bb&pid=1-s2.0-S1749461323000477-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138403706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Lingzhi naming dilemma: Overlooked and long-forgotten names threaten nomenclatural stability","authors":"Viktor Papp","doi":"10.1016/j.fbr.2023.100338","DOIUrl":"10.1016/j.fbr.2023.100338","url":null,"abstract":"<div><p>The Lingzhi mushroom is a species of great economic importance that has been extensively researched, yet there is still no consensus on its scientific name. In a recent article based on new taxonomic results, the authors argued for using the name <em>Ganoderma sichuanense</em> instead of <em>G. lingzhi</em>, which has been widely accepted by the scientific community in the last ten years. However, replacing a stable and popular name based on current results may exacerbate the crisis surrounding the correct name of this species. Therefore, my aim is to review the situation with respected to the name <em>G. sichuanense</em>. To achieve this, it is necessary to carefully review whether it is indeed the earliest valid scientific name that can be applied to the Lingzhi mushroom. Moreover, in the interest of nomenclatural stability, we must consider whether the earliest published basionym is the best choice for the scientific name of this economically and culturally significant fungal species. The urgent clarification of this issue is necessary because only a widely accepted name has the possibility to compete with the still widely but incorrectly used name <em>G. lucidum</em> in many publications and on medicinal products.</p></div>","PeriodicalId":12563,"journal":{"name":"Fungal Biology Reviews","volume":"47 ","pages":"Article 100338"},"PeriodicalIF":6.0,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1749461323000441/pdfft?md5=1ef558016f10f2dae4cf617877133dc7&pid=1-s2.0-S1749461323000441-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135762969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abhay K. Pandey , Ganga D. Sinniah , Shivanand Yadav , Sajeewa S.N. Maharachchikumbura
{"title":"Pestalotiopsis-like species: host network and lifestyle on tea crop","authors":"Abhay K. Pandey , Ganga D. Sinniah , Shivanand Yadav , Sajeewa S.N. Maharachchikumbura","doi":"10.1016/j.fbr.2023.100340","DOIUrl":"10.1016/j.fbr.2023.100340","url":null,"abstract":"<div><p><em>Pestalotiopsis</em>-like species are necrotrophic fungi, which infect many annual and perennial crops, including agricultural, horticultural, and plantation crops, in postharvest and under field conditions worldwide. They cause multiple diseases on crops, which results in severe yield loss. At present, <em>Pestalotiopsis-</em>like species cause gray blight on tea, which is a widely prevalent disease in major tea-growing countries and rapidly spreading in other tea-growing countries of minor importance due to climate change. The global increase in disease incidence and severity and the emergence of new virulent isolates have prompted research on the evolution of pathogenic determinants in these fungal species. This review synthesizes the epidemiology, molecular and genetic studies of the gray blight pathogen with particular reference to tea crop and the approaches to mitigate it. Further, the adaptation of <em>Pestalotiopsis-</em>like species on other crops and their management strategies are also discussed along with potential areas for future research.</p></div>","PeriodicalId":12563,"journal":{"name":"Fungal Biology Reviews","volume":"47 ","pages":"Article 100340"},"PeriodicalIF":6.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1749461323000465/pdfft?md5=27aa7aac505ead7e3388748d9035f3ac&pid=1-s2.0-S1749461323000465-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135705879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Utilization of Raman spectroscopy for identification and characterization of fungal pathogens","authors":"Ruchira Udupa , Prakash Peralam Yegneswaran , Jijo Lukose , Santhosh Chidangil","doi":"10.1016/j.fbr.2023.100339","DOIUrl":"10.1016/j.fbr.2023.100339","url":null,"abstract":"<div><p>Rapid and accurate identification of pathogens causing infections is one of the biggest challenges of medicine. Timely identification and characterization of fungal pathogens is essential for choosing a suitable tailored antifungal treatment and proper management of patients. This, in turn, leads to the shortening of hospital stays, reducing costs and time to adequate treatment, increasing the well-being of patients, limiting the spread of antifungal resistance, and helps to save the lives of many patients. Raman spectra allow the assessment of the overall molecular constitution of biological samples, based on specific signals from proteins, nucleic acids, lipids, carbohydrates, and inorganic crystals. It has been found to be a valuable tool for the identification of microorganisms, characterization of virulence factors, and their ability to form biofilms. The most used method in current diagnostic laboratories for fungal identification is fungal culture which can take four weeks or longer to maximize the recovery of slowly growing fungi. This needs the development of new methods to detect and identify these pathogens directly from clinical samples.</p><p>We aim to offer an evidence-based review of the Raman spectroscopy technique, its strengths, and limitations with respect to its use in the field of medical mycology to help in the early detection of fungal pathogens. Raman spectroscopy can be used not only for identification but, also for the biochemical analysis of the fungal pathogen. It is a precise, convenient, and low-cost method for fungal detection. Analysis of various cell organelles present in the fungal cell can help us understand the cell dynamics and enable us to study the reaction of those cells under different environmental stresses. It can also help us to further study mechanisms of antifungal resistance.</p></div>","PeriodicalId":12563,"journal":{"name":"Fungal Biology Reviews","volume":"47 ","pages":"Article 100339"},"PeriodicalIF":6.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1749461323000453/pdfft?md5=069b7c7ebfeb9eb15a83272f35674946&pid=1-s2.0-S1749461323000453-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135655810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oliver Blechert , Shuzhen Xiong , Jingjing Chen , Alexandra C. Brand , Ping Zhan
{"title":"Nutritional requirements of the human pathogenic fungus, Trichophyton rubrum, and nutritional immunity of the human skin as barrier against colonization","authors":"Oliver Blechert , Shuzhen Xiong , Jingjing Chen , Alexandra C. Brand , Ping Zhan","doi":"10.1016/j.fbr.2023.100330","DOIUrl":"10.1016/j.fbr.2023.100330","url":null,"abstract":"<div><p><span><em>Trichophyton rubrum</em></span><span> is a pathogenic fungus infecting human skin, hairs and nails. These substrates are colonized only by very few fungal species. In this review, we summarise the nutritional requirements of fungal species, with a focus on </span><em>T. rubrum</em><span><span>, and compare them with nutrients available in the keratinized tissues. The outer layers of the human skin are low in most nutrients required for fungal growth, the basis of nutritional immunity. Carbohydrate availability is low and protein, in the form of </span>keratin, is used for energy and carbon by the fungus. In addition to the nitrogen derived from keratin, the skin is rich in phosphorus, sulfur, potassium and chloride. The concentration of trace elements is very low, especially in the outermost layer of the skin, and magnesium, iron and zinc are likely the most relevant limiting elements for </span><em>T. rubrum</em>. We point to the evolutionary adaption of the fungus to the human skin. <em>T. rubrum</em> has a sophisticated system for the digestion and utilization of extracellular protein and a relative low demand for micronutrients.</p></div>","PeriodicalId":12563,"journal":{"name":"Fungal Biology Reviews","volume":"45 ","pages":"Article 100330"},"PeriodicalIF":6.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48656407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}