Frontiers in Neural Circuits最新文献

筛选
英文 中文
Template MRI scans reliably approximate individual and group-level tES and TMS electric fields induced in motor and prefrontal circuits. 模板MRI扫描可靠地近似于运动和前额叶电路中诱导的个体和群体水平的tES和TMS电场。
IF 3.4 3区 医学
Frontiers in Neural Circuits Pub Date : 2023-09-06 eCollection Date: 2023-01-01 DOI: 10.3389/fncir.2023.1214959
Jennifer Y Cho, Sybren Van Hoornweder, Christopher T Sege, Michael U Antonucci, Lisa M McTeague, Kevin A Caulfield
{"title":"Template MRI scans reliably approximate individual and group-level tES and TMS electric fields induced in motor and prefrontal circuits.","authors":"Jennifer Y Cho, Sybren Van Hoornweder, Christopher T Sege, Michael U Antonucci, Lisa M McTeague, Kevin A Caulfield","doi":"10.3389/fncir.2023.1214959","DOIUrl":"10.3389/fncir.2023.1214959","url":null,"abstract":"<p><strong>Background: </strong>Electric field (E-field) modeling is a valuable method of elucidating the cortical target engagement from transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES), but it is typically dependent on individual MRI scans. In this study, we systematically tested whether E-field models in template MNI-152 and Ernie scans can reliably approximate group-level E-fields induced in <i>N</i> = 195 individuals across 5 diagnoses (healthy, alcohol use disorder, tobacco use disorder, anxiety, depression).</p><p><strong>Methods: </strong>We computed 788 E-field models using the CHARM-SimNIBS 4.0.0 pipeline with 4 E-field models per participant (motor and prefrontal targets for TMS and tES). We additionally calculated permutation analyses to determine the point of stability of E-fields to assess whether the 152 brains represented in the MNI-152 template is sufficient.</p><p><strong>Results: </strong>Group-level E-fields did not significantly differ between the individual vs. MNI-152 template and Ernie scans for any stimulation modality or location (<i>p</i> > 0.05). However, TMS-induced E-field magnitudes significantly varied by diagnosis; individuals with generalized anxiety had significantly higher prefrontal and motor E-field magnitudes than healthy controls and those with alcohol use disorder and depression (<i>p</i> < 0.001). The point of stability for group-level E-field magnitudes ranged from 42 (motor tES) to 52 participants (prefrontal TMS).</p><p><strong>Conclusion: </strong>MNI-152 and Ernie models reliably estimate group-average TMS and tES-induced E-fields transdiagnostically. The MNI-152 template includes sufficient scans to control for interindividual anatomical differences (i.e., above the point of stability). Taken together, using the MNI-152 and Ernie brains to approximate group-level E-fields is a valid and reliable approach.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"17 ","pages":"1214959"},"PeriodicalIF":3.4,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510202/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41146544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multisite rTMS combined with cognitive training modulates effective connectivity in patients with Alzheimer's disease. 多部位rTMS与认知训练相结合可调节阿尔茨海默病患者的有效连接。
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2023-09-05 eCollection Date: 2023-01-01 DOI: 10.3389/fncir.2023.1202671
Yuanyuan Qin, Li Ba, Fengxia Zhang, Si Jian, Tian Tian, Min Zhang, Wenzhen Zhu
{"title":"Multisite rTMS combined with cognitive training modulates effective connectivity in patients with Alzheimer's disease.","authors":"Yuanyuan Qin,&nbsp;Li Ba,&nbsp;Fengxia Zhang,&nbsp;Si Jian,&nbsp;Tian Tian,&nbsp;Min Zhang,&nbsp;Wenzhen Zhu","doi":"10.3389/fncir.2023.1202671","DOIUrl":"https://doi.org/10.3389/fncir.2023.1202671","url":null,"abstract":"<p><strong>Purpose: </strong>To investigate the effective connectivity (EC) changes after multisite repetitive transcranial magnetic stimulation (rTMS) combined with cognitive training (COG).</p><p><strong>Method: </strong>We selected 51 patients with mild or moderate Alzheimer's disease (AD) and delivered 10 Hz rTMS over the left dorsal lateral prefrontal cortex (DLPFC) and the lateral temporal lobe (LTL) combined with COG or sham stimulation for 4 weeks. The selected AD patients were divided into real (real rTMS+COG, <i>n</i> = 11) or sham (sham rTMS+COG, <i>n</i> = 8) groups to undergo neuropsychological assessment, resting-state fMRI, and 3D brain structural imaging before (T0), immediately at the end of treatment (T4), and 4 weeks after treatment (T8). A 2 × 3 factorial design with \"time\" as the within-subjects factor (three levels: T0, T4, and T8) and \"group\" as the between-subjects factor (two levels: real and sham) was used to investigate the EC changes related to the stimulation targets in the rest of the brain, as well as the causal interactions among seven resting-state networks based on Granger causality analysis (GCA).</p><p><strong>Results: </strong>At the voxel level, the EC changes from the left DLPFC out to the left inferior parietal lobe and the left superior frontal gyrus, as well as from the left LTL out to the left orbital frontal cortex, had a significant group × time interaction effect. At the network level, a significant interaction effect was identified in the increase in EC from the limbic network out to the default mode network. The decrease in EC at the voxel level and the increase in EC at the network level were both associated with the improved ability to perform activities of daily living and cognitive function.</p><p><strong>Conclusion: </strong>Multisite rTMS combined with cognitive training can modulate effective connectivity in patients with AD, resulting in improved ability to perform activities of daily living and cognitive function.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"17 ","pages":"1202671"},"PeriodicalIF":3.5,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508233/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41138538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Neural circuits underlying general anesthetics mediated consciousness changes. 社论:全身麻醉剂介导的意识变化背后的神经回路。
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2023-09-04 eCollection Date: 2023-01-01 DOI: 10.3389/fncir.2023.1251970
Cheng Zhou
{"title":"Editorial: Neural circuits underlying general anesthetics mediated consciousness changes.","authors":"Cheng Zhou","doi":"10.3389/fncir.2023.1251970","DOIUrl":"https://doi.org/10.3389/fncir.2023.1251970","url":null,"abstract":"COPYRIGHT © 2023 Zhou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Editorial: Neural circuits underlying general anesthetics mediated consciousness changes","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"17 ","pages":"1251970"},"PeriodicalIF":3.5,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507362/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41136941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anatomical identification of a corticocortical top-down recipient inhibitory circuitry by enhancer-restricted transsynaptic tracing. 通过增强子限制性突触追踪对皮质自上而下受体抑制回路的解剖学鉴定。
IF 3.4 3区 医学
Frontiers in Neural Circuits Pub Date : 2023-08-30 eCollection Date: 2023-01-01 DOI: 10.3389/fncir.2023.1245097
Yusuke Atsumi, Yasuhiro Oisi, Maya Odagawa, Chie Matsubara, Yoshihito Saito, Hiroyuki Uwamori, Kenta Kobayashi, Shigeki Kato, Kazuto Kobayashi, Masanori Murayama
{"title":"Anatomical identification of a corticocortical top-down recipient inhibitory circuitry by enhancer-restricted transsynaptic tracing.","authors":"Yusuke Atsumi, Yasuhiro Oisi, Maya Odagawa, Chie Matsubara, Yoshihito Saito, Hiroyuki Uwamori, Kenta Kobayashi, Shigeki Kato, Kazuto Kobayashi, Masanori Murayama","doi":"10.3389/fncir.2023.1245097","DOIUrl":"10.3389/fncir.2023.1245097","url":null,"abstract":"<p><p>Despite the importance of postsynaptic inhibitory circuitry targeted by mid/long-range projections (e.g., top-down projections) in cognitive functions, its anatomical properties, such as laminar profile and neuron type, are poorly understood owing to the lack of efficient tracing methods. To this end, we developed a method that combines conventional adeno-associated virus (AAV)-mediated transsynaptic tracing with a distal-less homeobox (Dlx) enhancer-restricted expression system to label postsynaptic inhibitory neurons. We called this method \"Dlx enhancer-restricted Interneuron-SpECific transsynaptic Tracing\" (DISECT). We applied DISECT to a top-down corticocortical circuit from the secondary motor cortex (M2) to the primary somatosensory cortex (S1) in wild-type mice. First, we injected AAV1-Cre into the M2, which enabled Cre recombinase expression in M2-input recipient S1 neurons. Second, we injected AAV1-hDlx-flex-green fluorescent protein (GFP) into the S1 to transduce GFP into the postsynaptic inhibitory neurons in a Cre-dependent manner. We succeeded in exclusively labeling the recipient inhibitory neurons in the S1. Laminar profile analysis of the neurons labeled via DISECT indicated that the M2-input recipient inhibitory neurons were distributed in the superficial and deep layers of the S1. This laminar distribution was aligned with the laminar density of axons projecting from the M2. We further classified the labeled neuron types using immunohistochemistry and <i>in situ</i> hybridization. This <i>post hoc</i> classification revealed that the dominant top-down M2-input recipient neuron types were somatostatin-expressing neurons in the superficial layers and parvalbumin-expressing neurons in the deep layers. These results demonstrate that DISECT enables the investigation of multiple anatomical properties of the postsynaptic inhibitory circuitry.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"17 ","pages":"1245097"},"PeriodicalIF":3.4,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502327/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10672540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward personalized circuit-based closed-loop brain-interventions in psychiatry: using symptom provocation to extract EEG-markers of brain circuit activity. 精神病学中基于个性化回路的闭环脑干预:使用症状激发提取脑回路活动的脑电图标记。
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2023-08-21 eCollection Date: 2023-01-01 DOI: 10.3389/fncir.2023.1208930
Brigitte Zrenner, Christoph Zrenner, Nicholas Balderston, Daniel M Blumberger, Stefan Kloiber, Judith M Laposa, Reza Tadayonnejad, Alisson Paulino Trevizol, Gwyneth Zai, Jamie D Feusner
{"title":"Toward personalized circuit-based closed-loop brain-interventions in psychiatry: using symptom provocation to extract EEG-markers of brain circuit activity.","authors":"Brigitte Zrenner, Christoph Zrenner, Nicholas Balderston, Daniel M Blumberger, Stefan Kloiber, Judith M Laposa, Reza Tadayonnejad, Alisson Paulino Trevizol, Gwyneth Zai, Jamie D Feusner","doi":"10.3389/fncir.2023.1208930","DOIUrl":"10.3389/fncir.2023.1208930","url":null,"abstract":"<p><p>Symptom provocation is a well-established component of psychiatric research and therapy. It is hypothesized that specific activation of those brain circuits involved in the symptomatic expression of a brain pathology makes the relevant neural substrate accessible as a target for therapeutic interventions. For example, in the treatment of obsessive-compulsive disorder (OCD), symptom provocation is an important part of psychotherapy and is also performed prior to therapeutic brain stimulation with transcranial magnetic stimulation (TMS). Here, we discuss the potential of symptom provocation to isolate neurophysiological biomarkers reflecting the fluctuating activity of relevant brain networks with the goal of subsequently using these markers as targets to guide therapy. We put forward a general experimental framework based on the rapid switching between psychiatric symptom states. This enable neurophysiological measures to be derived from EEG and/or TMS-evoked EEG measures of brain activity during both states. By subtracting the data recorded during the baseline state from that recorded during the provoked state, the resulting contrast would ideally isolate the specific neural circuits differentially activated during the expression of symptoms. A similar approach enables the design of effective classifiers of brain activity from EEG data in Brain-Computer Interfaces (BCI). To obtain reliable contrast data, psychiatric state switching needs to be achieved multiple times during a continuous recording so that slow changes of brain activity affect both conditions equally. This is achieved easily for conditions that can be controlled intentionally, such as motor imagery, attention, or memory retention. With regard to psychiatric symptoms, an increase can often be provoked effectively relatively easily, however, it can be difficult to reliably and rapidly return to a baseline state. Here, we review different approaches to return from a provoked state to a baseline state and how these may be applied to different symptoms occurring in different psychiatric disorders.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"17 ","pages":"1208930"},"PeriodicalIF":3.5,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475600/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10188158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linking neural circuits to the mechanics of animal behavior in Drosophila larval locomotion. 将神经回路与果蝇幼虫运动中的动物行为机制联系起来。
IF 3.4 3区 医学
Frontiers in Neural Circuits Pub Date : 2023-08-17 eCollection Date: 2023-01-01 DOI: 10.3389/fncir.2023.1175899
Hiroshi Kohsaka
{"title":"Linking neural circuits to the mechanics of animal behavior in <i>Drosophila</i> larval locomotion.","authors":"Hiroshi Kohsaka","doi":"10.3389/fncir.2023.1175899","DOIUrl":"10.3389/fncir.2023.1175899","url":null,"abstract":"<p><p>The motions that make up animal behavior arise from the interplay between neural circuits and the mechanical parts of the body. Therefore, in order to comprehend the operational mechanisms governing behavior, it is essential to examine not only the underlying neural network but also the mechanical characteristics of the animal's body. The locomotor system of fly larvae serves as an ideal model for pursuing this integrative approach. By virtue of diverse investigation methods encompassing connectomics analysis and quantification of locomotion kinematics, research on larval locomotion has shed light on the underlying mechanisms of animal behavior. These studies have elucidated the roles of interneurons in coordinating muscle activities within and between segments, as well as the neural circuits responsible for exploration. This review aims to provide an overview of recent research on the neuromechanics of animal locomotion in fly larvae. We also briefly review interspecific diversity in fly larval locomotion and explore the latest advancements in soft robots inspired by larval locomotion. The integrative analysis of animal behavior using fly larvae could establish a practical framework for scrutinizing the behavior of other animal species.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"17 ","pages":"1175899"},"PeriodicalIF":3.4,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499525/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10287247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinctive features of the central synaptic organization of Drosophila larval proprioceptors. 果蝇幼虫本体感受器中枢突触组织的独特特征。
IF 3.4 3区 医学
Frontiers in Neural Circuits Pub Date : 2023-07-26 eCollection Date: 2023-01-01 DOI: 10.3389/fncir.2023.1223334
Marie R Greaney, Chris C Wreden, Ellie S Heckscher
{"title":"Distinctive features of the central synaptic organization of <i>Drosophila</i> larval proprioceptors.","authors":"Marie R Greaney, Chris C Wreden, Ellie S Heckscher","doi":"10.3389/fncir.2023.1223334","DOIUrl":"10.3389/fncir.2023.1223334","url":null,"abstract":"<p><p>Proprioceptive feedback is critically needed for locomotor control, but how this information is incorporated into central proprioceptive processing circuits remains poorly understood. Circuit organization emerges from the spatial distribution of synaptic connections between neurons. This distribution is difficult to discern in model systems where only a few cells can be probed simultaneously. Therefore, we turned to a relatively simple and accessible nervous system to ask: how are proprioceptors' input and output synapses organized in space, and what principles underlie this organization? Using the <i>Drosophila</i> larval connectome, we generated a map of the input and output synapses of 34 proprioceptors in several adjacent body segments (5-6 left-right pairs per segment). We characterized the spatial organization of these synapses, and compared this organization to that of other somatosensory neurons' synapses. We found three distinguishing features of larval proprioceptor synapses: (1) Generally, individual proprioceptor types display segmental somatotopy. (2) Proprioceptor output synapses both converge and diverge in space; they are organized into six spatial domains, each containing a unique set of one or more proprioceptors. Proprioceptors form output synapses along the proximal axonal entry pathway into the neuropil. (3) Proprioceptors receive few inhibitory input synapses. Further, we find that these three features do not apply to other larval somatosensory neurons. Thus, we have generated the most comprehensive map to date of how proprioceptor synapses are centrally organized. This map documents previously undescribed features of proprioceptors, raises questions about underlying developmental mechanisms, and has implications for downstream proprioceptive processing circuits.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"17 ","pages":"1223334"},"PeriodicalIF":3.4,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410283/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10024938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinct topographic organization and network activity patterns of corticocollicular neurons within layer 5 auditory cortex. 第 5 层听觉皮层内皮质小丘神经元独特的地形组织和网络活动模式。
IF 3.4 3区 医学
Frontiers in Neural Circuits Pub Date : 2023-07-13 eCollection Date: 2023-01-01 DOI: 10.3389/fncir.2023.1210057
Tatjana T X Schmitt, Kira M A Andrea, Simon L Wadle, Jan J Hirtz
{"title":"Distinct topographic organization and network activity patterns of corticocollicular neurons within layer 5 auditory cortex.","authors":"Tatjana T X Schmitt, Kira M A Andrea, Simon L Wadle, Jan J Hirtz","doi":"10.3389/fncir.2023.1210057","DOIUrl":"10.3389/fncir.2023.1210057","url":null,"abstract":"<p><p>The auditory cortex (AC) modulates the activity of upstream pathways in the auditory brainstem via descending (corticofugal) projections. This feedback system plays an important role in the plasticity of the auditory system by shaping response properties of neurons in many subcortical nuclei. The majority of layer (L) 5 corticofugal neurons project to the inferior colliculus (IC). This corticocollicular (CC) pathway is involved in processing of complex sounds, auditory-related learning, and defense behavior. Partly due to their location in deep cortical layers, CC neuron population activity patterns within neuronal AC ensembles remain poorly understood. We employed two-photon imaging to record the activity of hundreds of L5 neurons in anesthetized as well as awake animals. CC neurons are broader tuned than other L5 pyramidal neurons and display weaker topographic order in core AC subfields. Network activity analyses revealed stronger clusters of CC neurons compared to non-CC neurons, which respond more reliable and integrate information over larger distances. However, results obtained from secondary auditory cortex (A2) differed considerably. Here CC neurons displayed similar or higher topography, depending on the subset of neurons analyzed. Furthermore, specifically in A2, CC activity clusters formed in response to complex sounds were spatially more restricted compared to other L5 neurons. Our findings indicate distinct network mechanism of CC neurons in analyzing sound properties with pronounced subfield differences, demonstrating that the topography of sound-evoked responses within AC is neuron-type dependent.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"17 ","pages":"1210057"},"PeriodicalIF":3.4,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372447/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9973670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural circuit and synaptic dysfunctions in ALS-FTD pathology. ALS-FTD 病理中的神经回路和突触功能障碍
IF 3.4 3区 医学
Frontiers in Neural Circuits Pub Date : 2023-07-04 eCollection Date: 2023-01-01 DOI: 10.3389/fncir.2023.1208876
Santiago Mora, Ilary Allodi
{"title":"Neural circuit and synaptic dysfunctions in ALS-FTD pathology.","authors":"Santiago Mora, Ilary Allodi","doi":"10.3389/fncir.2023.1208876","DOIUrl":"10.3389/fncir.2023.1208876","url":null,"abstract":"<p><p>Action selection is a capital feature of cognition that guides behavior in processes that range from motor patterns to executive functions. Here, the ongoing actions need to be monitored and adjusted in response to sensory stimuli to increase the chances of reaching the goal. As higher hierarchical processes, these functions rely on complex neural circuits, and connective loops found within the brain and the spinal cord. Successful execution of motor behaviors depends, first, on proper selection of actions, and second, on implementation of motor commands. Thus, pathological conditions crucially affecting the integrity and preservation of these circuits and their connectivity will heavily impact goal-oriented motor behaviors. Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two neurodegenerative disorders known to share disease etiology and pathophysiology. New evidence in the field of ALS-FTD has shown degeneration of specific neural circuits and alterations in synaptic connectivity, contributing to neuronal degeneration, which leads to the impairment of motor commands and executive functions. This evidence is based on studies performed on animal models of disease, post-mortem tissue, and patient derived stem cells. In the present work, we review the existing evidence supporting pathological loss of connectivity and selective impairment of neural circuits in ALS and FTD, two diseases which share strong genetic causes and impairment in motor and executive functions.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"17 ","pages":"1208876"},"PeriodicalIF":3.4,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10352654/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9859689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A deep network-based model of hippocampal memory functions under normal and Alzheimer's disease conditions. 基于深度网络的正常和阿尔茨海默病条件下海马记忆功能模型。
IF 3.5 3区 医学
Frontiers in Neural Circuits Pub Date : 2023-06-21 eCollection Date: 2023-01-01 DOI: 10.3389/fncir.2023.1092933
Tamizharasan Kanagamani, V Srinivasa Chakravarthy, Balaraman Ravindran, Ramshekhar N Menon
{"title":"A deep network-based model of hippocampal memory functions under normal and Alzheimer's disease conditions.","authors":"Tamizharasan Kanagamani, V Srinivasa Chakravarthy, Balaraman Ravindran, Ramshekhar N Menon","doi":"10.3389/fncir.2023.1092933","DOIUrl":"10.3389/fncir.2023.1092933","url":null,"abstract":"<p><p>We present a deep network-based model of the associative memory functions of the hippocampus. The proposed network architecture has two key modules: (1) an autoencoder module which represents the forward and backward projections of the cortico-hippocampal projections and (2) a module that computes familiarity of the stimulus and implements hill-climbing over the familiarity which represents the dynamics of the loops within the hippocampus. The proposed network is used in two simulation studies. In the first part of the study, the network is used to simulate image pattern completion by autoassociation under normal conditions. In the second part of the study, the proposed network is extended to a heteroassociative memory and is used to simulate picture naming task in normal and Alzheimer's disease (AD) conditions. The network is trained on pictures and names of digits from 0 to 9. The encoder layer of the network is partly damaged to simulate AD conditions. As in case of AD patients, under moderate damage condition, the network recalls superordinate words (\"odd\" instead of \"nine\"). Under severe damage conditions, the network shows a null response (\"I don't know\"). Neurobiological plausibility of the model is extensively discussed.</p>","PeriodicalId":12498,"journal":{"name":"Frontiers in Neural Circuits","volume":"17 ","pages":"1092933"},"PeriodicalIF":3.5,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9862196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信