Fatima Gulzar, Raza Ahmad, Suk-Yoon Kwan, Zulqurnain Khan, Sulaiman Ali Alharbi, Mohmmad Maroof Shah, Shoaib ur Rehman, Maria Siddique, Mohammad Javed Ansari, Irum Shahzadi, Muhammad Abu Bakar Saddique, Muhmmad Zahid Ishaq, Ummara Waheed
{"title":"Understanding the role of the fructose-1,6-bisphosphatase gene for enhancing the photosynthetic rate in Arabidopsis thaliana","authors":"Fatima Gulzar, Raza Ahmad, Suk-Yoon Kwan, Zulqurnain Khan, Sulaiman Ali Alharbi, Mohmmad Maroof Shah, Shoaib ur Rehman, Maria Siddique, Mohammad Javed Ansari, Irum Shahzadi, Muhammad Abu Bakar Saddique, Muhmmad Zahid Ishaq, Ummara Waheed","doi":"10.1071/fp24034","DOIUrl":"https://doi.org/10.1071/fp24034","url":null,"abstract":"<p>Transgenic <i>Arabidopsis thaliana</i> (ecotype Columbia) was successfully transformed with the gene <i>fructose-1,6-bisphosphatase</i> (<i>FBPas</i>e) and named as <i>AtFBPase</i> plants. Transgenic plants exhibited stable transformation, integration and significantly higher expressions for the transformed gene. Morphological evaluation of transgenic plants showed increased plant height (35 cm), number of leaves (25), chlorophyll contents (28%), water use efficiency (increased from 1.5 to 2.6 μmol CO<sub>2</sub> μmol<sup>−1</sup> H<sub>2</sub>O) and stomatal conductance (20%), which all resulted in an enhanced photosynthetic rate (2.7 μmol m<sup>−2</sup> s<sup>−1</sup>) compared to wild type plants. This study suggests the vital role of <i>FBPase</i> gene in the modification of regulatory pathways to enhance the photosynthetic rate, which can also be utilised for economic crops in future.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140636301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Shrub leaf area and leaf vein trait trade-offs in response to the light environment in a vegetation transitional zone","authors":"Dingyue Liu, Chengzhang Zhao, Geyang Li, Zhini Chen, Suhong Wang, Chenglu Huang, Peixian Zhang","doi":"10.1071/fp24011","DOIUrl":"https://doi.org/10.1071/fp24011","url":null,"abstract":"<p>The leaf is an important site for energy acquisition and material transformation in plants. Leaf functional traits and their trade-off mechanisms reflect the resource utilisation efficiency and habitat adaptation strategies of plants, and contribute to our understanding of the mechanism by which the distribution pattern of plant populations in arid and semi-arid areas influences the evolution of vegetation structure and function. We selected two natural environments, the tree–shrub community canopy area and the shrub–grass community open area in the transition zone between the Qinghai–Tibet Plateau and the Loess Plateau. We studied the trade-off relationships of leaf area with leaf midvein diameter and leaf vein density in <i>Cotoneaster multiflorus</i> using the standardised major axis (SMA) method. The results show that the growth pattern of <i>C. multiflorus</i>, which has small leaves of high density and extremely small vein diameters, in the open area. The water use efficiency and net photosynthetic rate of plants in the open area were significantly greater than those of plants growing in the canopy area. The adaptability of <i>C. multiflorus</i> to environments with high light and low soil water content reflects its spatial colonisation potential in arid and semiarid mountains.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140636480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Both external and internal factors induce heterogeneity in senescing leaves of deciduous trees","authors":"Heta Mattila, Sergey Khorobrykh, Esa Tyystjärvi","doi":"10.1071/fp24012","DOIUrl":"https://doi.org/10.1071/fp24012","url":null,"abstract":"<p>Autumn senescence is characterised by spatial and temporal heterogeneity. We show that senescing birch (<i>Betula</i> spp.) leaves had lower PSII activity (probed by the <i>F</i><sub>V</sub>/<i>F</i><sub>M</sub> chlorophyll <i>a</i> fluorescence parameter) in late autumn than in early autumn. We confirmed that PSII repair slows down with decreasing temperature, while rates of photodamage and recovery, measured under laboratory conditions at 20°C, were similar in these leaves. We propose that low temperatures during late autumn hinder repair and lead to accumulation of non-functional PSII units in senescing leaves. Fluorescence imaging of birch revealed that chlorophyll preferentially disappeared from inter-veinal leaf areas. These areas showed no recovery capacity and low non-photochemical quenching while green veinal areas of senescing leaves resembled green leaves. However, green and yellow leaf areas showed similar values of photochemical quenching. Analyses of thylakoids isolated from maple (<i>Acer platanoides</i>) leaves showed that red, senescing leaves contained high amounts of carotenoids and α-tocopherol, and our calculations suggest that α-tocopherol was synthesised during autumn. Thylakoids isolated from red maple leaves produced little singlet oxygen, probably due to the high antioxidant content. However, the rate of PSII photodamage did not decrease. The data show that the heterogeneity of senescing leaves must be taken into account to fully understand autumn senescence.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140636271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification and analysis of MATE protein family in Gleditsia sinensis","authors":"Zisiye Mu, Zhun Liang, Jing Yang, Shixiang Wei, Yang Zhao, Heying Zhou","doi":"10.1071/fp23249","DOIUrl":"https://doi.org/10.1071/fp23249","url":null,"abstract":"<p>Many studies have shown that multidrug and toxic compound extrusion (MATE) is a new secondary transporter family that plays a key role in secondary metabolite transport, the transport of plant hormones and disease resistance in plants. However, detailed information on this family in <i>Gleditsia sinensis</i> has not yet been reported. In the present study, a total of 45 GsMATE protein members were identified and analysed in detail, including with gene classification, phylogenetic evaluation and conserved motif determination. Phylogenetic analysis showed that GsMATE proteins were divided into six subfamilies. Additionally, in order to understand these members’ regulatory roles in growth and development in <i>G. sinensis</i>, the <i>GsMATEs</i> expression profiles in different tissues and different developmental stages of thorn were examined in transcriptome data. The results of this study demonstrated that the expression of all <i>MATE</i> genes varies in roots, stems and leaves. Notably, the expression levels of <i>GsMATE26</i>, <i>GsMATE32</i> and <i>GsMATE43</i> differ most in the early stages of thorn development, peaking at higher levels than in later stages. Our results provide a foundation for further functional characterisation of this important class of transporter family in <i>G. sinensis</i>.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140636472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exogenous Streptomyces spp. enhance the drought resistance of naked oat (Avena nuda) seedlings by augmenting both the osmoregulation mechanisms and antioxidant capacities","authors":"Meixia Qiao, Siyuan Lv, Yuejing Qiao, Wen Lin, Zhiqiang Gao, Xiwang Tang, Zhenping Yang, Jie Chen","doi":"10.1071/fp23312","DOIUrl":"https://doi.org/10.1071/fp23312","url":null,"abstract":"<p>Drought is a major obstacle to the development of naked oat industry. This work investigated mechanisms by which exogenous <i>Streptomyces albidoflavus</i> T4 and <i>Streptomyces rochei</i> D74 improved drought tolerance in naked oat (<i>Avena nuda</i>) seedlings. Results showed that in the seed germination experiment, germination rate, radicle and hypocotyl length of naked oat seeds treated with the fermentation filtrate of T4 or D74 under PEG induced drought stress increased significantly. In the hydroponic experiment, the shoot and root dry weights of oat seedlings increased significantly when treated with the T4 or D74 fermentation filtrate under the 15% PEG induced drought stress (S15). Simultaneously, the T4 treatment also significantly increased the surface area, volume, the number of tips and the root activity of oat seedlings. Both T4 and D74 treatments elicited significant increases in proline and soluble sugar contents, as well as the catalase and peroxidase activities in oat seedlings. The results of comprehensive drought resistance capacity (CDRC) calculation of oat plants showed that the drought resistance of oat seedlings under the T4 treatment was better than that under the D74 treatment, and the effect was better under higher drought stress (S15). Findings of this study may provide a novel and effective approach for enhancing plant defenses against drought stress.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140571652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gerhard C. Rossouw, Ryan Orr, Dale Bennett, Ian S. E. Bally
{"title":"The roles of non-structural carbohydrates in fruiting: a review focusing on mango (Mangifera indica)","authors":"Gerhard C. Rossouw, Ryan Orr, Dale Bennett, Ian S. E. Bally","doi":"10.1071/fp23195","DOIUrl":"https://doi.org/10.1071/fp23195","url":null,"abstract":"<p>Reproductive development of fruiting trees, including mango (<i>Mangifera indica</i> L.), is limited by non-structural carbohydrates. Competition for sugars increases with cropping, and consequently, vegetative growth and replenishment of starch reserves may reduce with high yields, resulting in interannual production variability. While the effect of crop load on photosynthesis and the distribution of starch within the mango tree has been studied, the contribution of starch and sugars to different phases of reproductive development requires attention. This review focuses on mango and examines the roles of non-structural carbohydrates in fruiting trees to clarify the repercussions of crop load on reproductive development. Starch buffers the plant’s carbon availability to regulate supply with demand, while sugars provide a direct resource for carbon translocation. Sugar signalling and interactions with phytohormones play a crucial role in flowering, fruit set, growth, ripening and retention, as well as regulating starch, sugar and secondary metabolites in fruit. The balance between the leaf and fruit biomass affects the availability and contributions of starch and sugars to fruiting. Crop load impacts photosynthesis and interactions between sources and sinks. As a result, the onset and rate of reproductive processes are affected, with repercussions for fruit size, composition, and the inter-annual bearing pattern.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140572119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Osama Alam, Latif Ullah Khan, Adeel Khan, Saleh H. Salmen, Mohammad Javed Ansari, Fizza Mehwish, Mushtaq Ahmad, Qamar U. Zaman, Hua-Feng Wang
{"title":"Functional characterisation of Dof gene family and expression analysis under abiotic stresses and melatonin-mediated tolerance in pitaya (Selenicereus undatus)","authors":"Osama Alam, Latif Ullah Khan, Adeel Khan, Saleh H. Salmen, Mohammad Javed Ansari, Fizza Mehwish, Mushtaq Ahmad, Qamar U. Zaman, Hua-Feng Wang","doi":"10.1071/fp23269","DOIUrl":"https://doi.org/10.1071/fp23269","url":null,"abstract":"<p>DNA binding proteins with one finger (<i>Dof</i>) transcription factors are essential for seed development and defence against various biotic and abiotic stresses in plants. Genomic analysis of <i>Dof</i> has not been determined yet in pitaya (<i>Selenicereus undatus</i>). In this study, we have identified 26 <i>Dof</i> gene family members, renamed as <i>HuDof-1</i> to <i>HuDof-26</i>, and clustered them into seven subfamilies based on conserved motifs, domains, and phylogenetic analysis. The gene pairs of <i>Dof</i> family members were duplicated by segmental duplications that faced purifying selection, as indicated by the <i>K</i><sub>a</sub>/<i>K</i><sub>s</sub> ratio values. Promoter regions of <i>HuDof</i> genes contain many <i>cis</i>-acting elements related to phytohormones including abscisic acid, jasmonic acid, gibberellin, temperature, and light. We exposed pitaya plants to different environmental stresses and examined melatonin’s influence on <i>Dof</i> gene expression levels. Signifcant expression of <i>HuDof</i>-2 and <i>HuDof</i>-6 were observed in different developmental stages of flower buds, flowers, pericarp, and pulp. Pitaya plants were subjected to abiotic stresses, and transcriptome analysis was carried out to identify the role of <i>Dof</i> gene family members. RNA-sequencing data and reverse transcription quantitative PCR-based expression analysis revealed three putative candidate genes (<i>HuDof</i>-1, <i>HuDof</i>-2, and <i>HuDof</i>-8), which might have diverse roles against the abiotic stresses. Our study provides a theoretical foundation for functional analysis through traditional and modern biotechnological tools for pitaya trait improvement.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140572203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Syeda Okasha Javed, Shahid Iqbal Awan, Sania Shouket, Kotb A Attia, Zhu Xi, Arif Ahmed Mohammed, Sher Aslam Khan, Sayeda Tanavish Javed, Yasir Majeed
{"title":"<i>Corrigendum to</i>: Physiological and biochemical assortment in different wheat genotypes (<i>Triticum aestivum</i> L.) under rain fed conditions.","authors":"Syeda Okasha Javed, Shahid Iqbal Awan, Sania Shouket, Kotb A Attia, Zhu Xi, Arif Ahmed Mohammed, Sher Aslam Khan, Sayeda Tanavish Javed, Yasir Majeed","doi":"10.1071/FP23252_CO","DOIUrl":"https://doi.org/10.1071/FP23252_CO","url":null,"abstract":"","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140853671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ivana Milenkovic, Milan Borišev, Yiqun Zhou, Sladjana Z Spasic, Dunja Spasic, Roger M Leblanc, Ksenija Radotic
{"title":"Non-toxic orange carbon dots stimulate photosynthesis and CO<sub>2</sub> assimilation in hydroponically cultivated green beans (<i>Phaseolus vulgaris</i>).","authors":"Ivana Milenkovic, Milan Borišev, Yiqun Zhou, Sladjana Z Spasic, Dunja Spasic, Roger M Leblanc, Ksenija Radotic","doi":"10.1071/FP23164","DOIUrl":"10.1071/FP23164","url":null,"abstract":"<p><p>Continuous increasing leaf photosynthesis may enhance plant yield. As an evolutionary property, plants use less photosynthetic capacity than is theoretically possible. Plant nanobionics is a bioengineering field that improves plant functions using nanoparticles. We applied orange carbon dots (o-CDs) onto the foliage of green beans (Phaseolus vulgaris ) grown in hydroponics to improve their photosynthetic performance and CO2 assimilation. Photosynthesis parameters, photosynthetic pigments content, total phenolic content (TPC) and antioxidative activity (TAA) were measured. Results show that photosynthetic pigments remained unchanged, while photosynthesis was improved. Both o-CDs concentrations decreased TPC and TAA. The light response curve showed higher CO2 assimilation at both o-CDs concentrations, particularly at lower light intensity. Correlation analysis confirmed increased CO2 binding and assimilation at 1mg L-1 . This study demonstrated the potential of using o-CDs as a safe biostimulator through photosynthesis increase and CO2 assimilation without toxic effects on plants. This may stimulate yield increase that paves the way for their agricultural application.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140335297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Root anatomical plasticity contributes to the different adaptive responses of two <i>Phragmites</i> species to water-deficit and low-oxygen conditions.","authors":"Takaki Yamauchi, Kurumi Sumi, Hiromitsu Morishita, Yasuyuki Nomura","doi":"10.1071/FP23231","DOIUrl":"10.1071/FP23231","url":null,"abstract":"<p><p>The runner reed (Phragmites japonica ) is the dominant species on riverbanks, whereas the common reed (Phragmites australis ) thrives in continuously flooded areas. Here, we aimed to identify the key root anatomical traits that determine the different adaptative responses of the two Phragmites species to water-deficit and low-oxygen conditions. Growth measurements revealed that P . japonica tolerated high osmotic conditions, whereas P . australis preferred low-oxygen conditions. Root anatomical analysis revealed that the ratios of the cortex to stele area and aerenchyma (gas space) to cortex area in both species increased under low-oxygen conditions. However, a higher ratio of cortex to stele area in P . australis resulted in a higher ratio of aerenchyma to stele, which includes xylem vessels that are essential for water and nutrient uptakes. In contrast, a lower ratio of cortex to stele area in P . japonica could be advantageous for efficient water uptake under high-osmotic conditions. In addition to the ratio of root tissue areas, rigid outer apoplastic barriers composed of a suberised exodermis may contribute to the adaptation of P . japonica and P . australis to water-deficit and low-oxygen conditions, respectively. Our results suggested that root anatomical plasticity is essential for plants to adapt and respond to different soil moisture levels.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140119262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}