Acibenzolar-S-methyl promotes wound healing of harvested sweet potatoes (Ipomoea batatas) by regulation of reactive oxygen species metabolism and phenylpropanoid pathway.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Caixia Wang, Lei Wei, Xiaoyu Liu, Qi Ye
{"title":"Acibenzolar-S-methyl promotes wound healing of harvested sweet potatoes (<i>Ipomoea batatas</i>) by regulation of reactive oxygen species metabolism and phenylpropanoid pathway.","authors":"Caixia Wang, Lei Wei, Xiaoyu Liu, Qi Ye","doi":"10.1071/FP23319","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid wound healing is crucial in protecting sweet potatoes (Ipomoea batatas ) against infection, water loss and quality deterioration during storage. The current study investigated how acibenzolar-S-methyl (ASM) treatment influenced wound healing in harvested sweet potatoes by investigating the underlying mechanism. It was found that ASM treatment of wounded sweet potatoes induced a significant accumulation of lignin at the wound sites, which effectively suppressed weight loss. After 4days of healing, the lignin content of ASM-treated sweet potatoes was 41.8% higher than that of untreated ones, and the weight loss rate was 20.4% lower. Moreover, ASM treatment increased the ability of sweet potatoes to defend against wounding stress through enhancing processes such as increased production of reactive oxygen species (ROS), activation of enzymes involved in the ROS metabolism (peroxidase, superoxide dismutase and catalase) and phenylpropanoid pathway (phenylalanine ammonia lyase, cinnamate-4-hydroxylase, 4-coumarate-CoA ligase and cinnamyl alcohol dehydrogenase), and intensive synthesis of phenolics and flavonoids. These results suggest that treating harvested sweet potatoes with ASM promotes wound healing through the activation of the ROS metabolism and phenylpropanoid pathway.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP23319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid wound healing is crucial in protecting sweet potatoes (Ipomoea batatas ) against infection, water loss and quality deterioration during storage. The current study investigated how acibenzolar-S-methyl (ASM) treatment influenced wound healing in harvested sweet potatoes by investigating the underlying mechanism. It was found that ASM treatment of wounded sweet potatoes induced a significant accumulation of lignin at the wound sites, which effectively suppressed weight loss. After 4days of healing, the lignin content of ASM-treated sweet potatoes was 41.8% higher than that of untreated ones, and the weight loss rate was 20.4% lower. Moreover, ASM treatment increased the ability of sweet potatoes to defend against wounding stress through enhancing processes such as increased production of reactive oxygen species (ROS), activation of enzymes involved in the ROS metabolism (peroxidase, superoxide dismutase and catalase) and phenylpropanoid pathway (phenylalanine ammonia lyase, cinnamate-4-hydroxylase, 4-coumarate-CoA ligase and cinnamyl alcohol dehydrogenase), and intensive synthesis of phenolics and flavonoids. These results suggest that treating harvested sweet potatoes with ASM promotes wound healing through the activation of the ROS metabolism and phenylpropanoid pathway.

通过调节活性氧代谢和苯丙醇途径,Acibenzolar-S-methyl 可促进收获甘薯(Ipomoea batatas)的伤口愈合。
伤口的快速愈合对于保护甘薯(Ipomoea batatas)免受贮藏期间的感染、水分流失和质量下降至关重要。本研究通过探究其潜在机制,研究了甲基异丁烯酸(ASM)处理如何影响收获甘薯的伤口愈合。研究发现,对受伤甘薯进行 ASM 处理可诱导木质素在伤口处显著积累,从而有效抑制重量损失。伤口愈合 4 天后,经 ASM 处理的甘薯木质素含量比未处理的高 41.8%,重量损失率降低了 20.4%。此外,ASM 处理还能提高甘薯抵御创伤应激的能力,具体方法是增加活性氧(ROS)的产生,激活参与 ROS 代谢的酶(过氧化物酶、超氧化物歧化酶和过氧化氢酶)和苯丙氨酸途径(苯丙氨酸氨裂解酶、肉桂酸-4-羟化酶、4-香豆酸-CoA 连接酶和肉桂醇脱氢酶),以及强化酚类和类黄酮的合成。这些结果表明,用 ASM 处理收获的甘薯可通过激活 ROS 代谢和苯丙醇途径促进伤口愈合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信