Functional Plant Biology最新文献

筛选
英文 中文
Evaluation of potential increase in photosynthetic efficiency of cassava (Manihot esculenta Crantz) plants exposed to elevated carbon dioxide. 评估木薯(Manihot esculenta Crantz)植物暴露于高浓度二氧化碳时光合效率的潜在提高。
IF 3 4区 生物学
Functional Plant Biology Pub Date : 2024-05-01 DOI: 10.1071/FP23254
V Ravi, Saravanan Raju, Sanket J More
{"title":"Evaluation of potential increase in photosynthetic efficiency of cassava (<i>Manihot esculenta</i> Crantz) plants exposed to elevated carbon dioxide.","authors":"V Ravi, Saravanan Raju, Sanket J More","doi":"10.1071/FP23254","DOIUrl":"10.1071/FP23254","url":null,"abstract":"<p><p>Cassava (Manihot esculenta Crantz), an important tropical crop, is affected by extreme climatic events, including rising CO2 levels. We evaluated the short-term effect of elevated CO2 concentration (ECO2 ) (600, 800 and 1000ppm) on the photosynthetic efficiency of 14 cassava genotypes. ECO2 significantly altered gaseous exchange parameters (net photosynthetic rate (P n ), stomatal conductance (g s ), intercellular CO2 (C i ) and transpiration (E )) in cassava leaves. There were significant but varying interactive effects between ECO2 and varieties on these physiological characteristics. ECO2 at 600 and 800ppm increased the P n rate in the range of 13-24% in comparison to 400ppm (ambient CO2 ), followed by acclimation at the highest concentration of 1000ppm. A similar trend was observed in g s and E . Conversely, C i increased significantly and linearly across increasing CO2 concentration. Along with C i , a steady increase in water use efficiency [WUEintrinsic (P n /g s ) and WUEinstantaneous (P n /E )] across various CO2 concentrations corresponded with the central role of restricted stomatal activity, a common response under ECO2 . Furthermore, P n had a significant quadratic relationship with the ECO2 (R 2 =0.489) and a significant and linear relationship with C i (R 2 =0.227). Relative humidity and vapour pressure deficit during the time of measurements remained at 70-85% and ~0.9-1.31kPa, respectively, at 26±2°C leaf temperature. Notably, not a single variety exhibited constant performance for any of the parameters across CO2 concentrations. Our results indicate that the potential photosynthesis can be increased up to 800ppm cassava varieties with high sink capacity can be cultivated under protected cultivation to attain higher productivity.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140921463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The genetic control of herkogamy 雌雄同体的基因控制
IF 3 4区 生物学
Functional Plant Biology Pub Date : 2024-04-30 DOI: 10.1071/fp23315
Jacques-Joseph Boucher, Hilary S. Ireland, Ruiling Wang, Karine M. David, Robert J. Schaffer
{"title":"The genetic control of herkogamy","authors":"Jacques-Joseph Boucher, Hilary S. Ireland, Ruiling Wang, Karine M. David, Robert J. Schaffer","doi":"10.1071/fp23315","DOIUrl":"https://doi.org/10.1071/fp23315","url":null,"abstract":"<p>Herkogamy is the spatial separation of anthers and stigmas within complete flowers, and is a key floral trait that promotes outcrossing in many angiosperms. The degree of separation between pollen-producing anthers and receptive stigmas has been shown to influence rates of self-pollination amongst plants, with a reduction in herkogamy increasing rates of successful selfing in self-compatible species. Self-pollination is becoming a critical issue in horticultural crops grown in environments where biotic pollinators are limited, absent, or difficult to utilise. In these cases, poor pollination results in reduced yield and misshapen fruit. Whilst there is a growing body of work elucidating the genetic basis of floral organ development, the genetic and environmental control points regulating herkogamy are poorly understood. A better understanding of the developmental and regulatory pathways involved in establishing varying degrees of herkogamy is needed to provide insights into the production of flowers more adept at selfing to produce consistent, high-quality fruit. This review presents our current understanding of herkogamy from a genetics and hormonal perspective.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide association studies identifies genetic loci related to fatty acid and branched-chain amino acid metabolism and histone modifications under varying nitrogen treatments in safflower (Carthamus tinctorius) 全基因组关联研究发现不同氮处理条件下红花(Carthamus tinctorius)脂肪酸和支链氨基酸代谢及组蛋白修饰的相关基因位点
IF 3 4区 生物学
Functional Plant Biology Pub Date : 2024-04-29 DOI: 10.1071/fp23310
Fawad Ali, Mian A. R. Arif, Arif Ali, Muhammad A. Nadeem, Emre Aksoy, Allah Bakhsh, Shahid U. Khan, Cemal Kurt, Dilek Tekdal, Muhammad K. Ilyas, Amjad Hameed, Yong S. Chung, Faheem S. Baloch
{"title":"Genome-wide association studies identifies genetic loci related to fatty acid and branched-chain amino acid metabolism and histone modifications under varying nitrogen treatments in safflower (Carthamus tinctorius)","authors":"Fawad Ali, Mian A. R. Arif, Arif Ali, Muhammad A. Nadeem, Emre Aksoy, Allah Bakhsh, Shahid U. Khan, Cemal Kurt, Dilek Tekdal, Muhammad K. Ilyas, Amjad Hameed, Yong S. Chung, Faheem S. Baloch","doi":"10.1071/fp23310","DOIUrl":"https://doi.org/10.1071/fp23310","url":null,"abstract":"<p>Effective identification and usage of genetic variation are prerequisites for developing nutrient-efficient cultivars. A collection of 94 safflower (<i>Carthamus tinctorius</i>) genotypes (G) was investigated for important morphological and photosynthetic traits at four nitrogen (N) treatments. We found significant variation for all the studied traits except chlorophyll <i>b</i> (chl <i>b</i>) among safflower genotypes, nitrogen treatments and G × N interaction. The examined traits showed a 2.82–50.00% increase in response to N application. Biological yield (BY) reflected a significantly positive correlation with fresh shoot weight (FSW), root length (RL), fresh root weight (FRW) and number of leaves (NOL), while a significantly positive correlation was also observed among carotenoids (C), chlorophyll <i>a</i> (chl <i>a</i>), chl <i>b</i> and total chlorophyll content (CT) under all treatments. Superior genotypes with respect to plant height (PH), FSW, NOL, RL, FRW and BY were clustered into Group 3, while genotypes with better mean performance regarding chl <i>a</i>, chl <i>b</i> C and CT were clustered into Group 2 as observed in principal component analysis. The identified eight best-performing genotypes could be useful to develop improved nitrogen efficient cultivars. Genome-wide association analysis resulted in 32 marker-trait associations (MTAs) under four treatments. Markers namely <i>DArT-45481731</i>, <i>DArT-17812864</i>, <i>DArT-15670279</i> and <i>DArT-45482737</i> were found consistent. Protein–protein interaction networks of loci associated with MTAs were related to fatty acid and branched-chain amino acid metabolism and histone modifications.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small ubiquitin-like modifiers E3 ligases in plant stress 植物胁迫中的泛素样小修饰物 E3 连接酶
IF 3 4区 生物学
Functional Plant Biology Pub Date : 2024-04-26 DOI: 10.1071/fp24032
Shantwana Ghimire, Md Mahadi Hasan, Xiang-Wen Fang
{"title":"Small ubiquitin-like modifiers E3 ligases in plant stress","authors":"Shantwana Ghimire, Md Mahadi Hasan, Xiang-Wen Fang","doi":"10.1071/fp24032","DOIUrl":"https://doi.org/10.1071/fp24032","url":null,"abstract":"Plants regularly encounter various environmental stresses such as salt, drought, cold, heat, heavy metals and pathogens, leading to changes in their proteome. Of these, a post-translational modification, SUMOylation is particularly significant for its extensive involvement in regulating various plant molecular processes to counteract these external stressors. Small ubiquitin-like modifiers (SUMO) protein modification significantly contributes to various plant functions, encompassing growth, development and response to environmental stresses. The SUMO system has a limited number of ligases even in fully sequenced plant genomes but SUMO E3 ligases are pivotal in recognising substrates during the process of SUMOylation. E3 ligases play pivotal roles in numerous biological and developmental processes in plants, including DNA repair, photomorphogenesis, phytohormone signalling and responses to abiotic and biotic stress. A considerable number of targets for E3 ligases are proteins implicated in reactions to abiotic and biotic stressors. This review sheds light on how plants respond to environmental stresses by focusing on recent findings on the role of SUMO E3 ligases, contributing to a better understanding of how plants react at a molecular level to such stressors.","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140652306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blue light regulated lignin and cellulose content of soybean petioles and stems under low light intensity 蓝光调节低光照强度下大豆叶柄和茎的木质素和纤维素含量
IF 3 4区 生物学
Functional Plant Biology Pub Date : 2024-04-26 DOI: 10.1071/fp23091
Wei He, Q. Chai, Cai Zhao, Aizhong Yu, Zhilong Fan, Wen Yin, Falong Hu, Hong Fan, Yali Sun, Feng Wang
{"title":"Blue light regulated lignin and cellulose content of soybean petioles and stems under low light intensity","authors":"Wei He, Q. Chai, Cai Zhao, Aizhong Yu, Zhilong Fan, Wen Yin, Falong Hu, Hong Fan, Yali Sun, Feng Wang","doi":"10.1071/fp23091","DOIUrl":"https://doi.org/10.1071/fp23091","url":null,"abstract":"To improve light harvest and plant structural support under low light intensity, it is useful to investigate the effects of different ratios of blue light on petiole and stem growth. Two true leaves of soybean seedlings were exposed to a total light intensity of 200 μmol m−2 s−1, presented as either white light or three levels of blue light (40 μmol m−2 s−1, 67 μmol m−2 s−1 and 100 μmol m−2 s−1) for 15 days. Soybean petioles under the low blue light treatment upregulated expression of genes relating to lignin metabolism, enhancing lignin content compared with the white light treatment. The low blue light treatment had high petiole length, increased plant height and improved petiole strength arising from high lignin content, thus significantly increasing leaf dry weight relative to the white light treatment. Compared with white light, the treatment with the highest blue light ratio reduced plant height and enhanced plant support through increased cellulose and hemicellulose content in the stem. Under low light intensity, 20% blue light enhanced petiole length and strength to improve photosynthate biomass; whereas 50% blue light lowered plants’ centre of gravity, preventing lodging and conserving carbohydrate allocation.","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140652668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic blueprints of soybean (Glycine max) pathogen resistance: revealing the key genes for sustainable agriculture 大豆(Glycine max)抗病原体基因组蓝图:揭示可持续农业的关键基因
IF 3 4区 生物学
Functional Plant Biology Pub Date : 2024-04-26 DOI: 10.1071/fp23295
Aiman Hina, Muhammad Khuram Razzaq, Asim Abbasi, Muhamad Basit Shehzad, Muhammad Arshad, Tayyaba Sanaullah, Kamran Arshad, Ghulam Raza, Hayssam M. Ali, Faisal Hayat, Naeem Akhtar, Nader R. Abdelsalam
{"title":"Genomic blueprints of soybean (Glycine max) pathogen resistance: revealing the key genes for sustainable agriculture","authors":"Aiman Hina, Muhammad Khuram Razzaq, Asim Abbasi, Muhamad Basit Shehzad, Muhammad Arshad, Tayyaba Sanaullah, Kamran Arshad, Ghulam Raza, Hayssam M. Ali, Faisal Hayat, Naeem Akhtar, Nader R. Abdelsalam","doi":"10.1071/fp23295","DOIUrl":"https://doi.org/10.1071/fp23295","url":null,"abstract":"<p>Soybean (<i>Glycine max</i>) is an important oilseed, protein and biodiesel crop. It faces significant threats from bacterial, fungal and viral pathogens, which cause economic losses and jeopardises global food security. In this article, we explore the relationship between soybeans and these pathogens, focusing on the molecular responses that are crucial for soybeans defence mechanisms. Molecular responses involve small RNAs and specific genes, including resistance (R) genes that are pivotal in triggering immune responses. Functional genomics, which makes use of cutting-edge technologies, such as CRISPR Cas9 gene editing, allows us to identify genes that provide insights into the defence mechanisms of soybeans with the focus on using genomics to understand the mechanisms involved in host pathogen interactions and ultimately improve the resilience of soybeans. Genes like <i>GmKR3</i> and <i>GmVQ58</i> have demonstrated resistance against soybean mosaic virus and common cutworm, respectively. Genetic studies have identified quantitative trait loci (QTLs) including those linked with soybean cyst nematode, root-knot nematode and <i>Phytophthora</i> root and stem rot resistance. Additionally, resistance against Asian soybean rust and soybean cyst nematode involves specific genes and their variations in terms of different copy numbers. To address the challenges posed by evolving pathogens and meet the demands of a growing population, accelerated soybean breeding efforts leveraging functional genomics are imperative. Targeted breeding strategies based on a deeper understanding of soybean gene function and regulation will enhance disease resistance, ensuring sustainable agriculture and global food security. Collaborative research and continued technological advancements are crucial for securing a resilient and productive agricultural future.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiological responses of the microalgae Thalassiosira weissflogii to the presence of the herbicide glyphosate in the medium 微藻 Thalassiosira weissflogii 对培养基中存在除草剂草甘膦的生理反应
IF 3 4区 生物学
Functional Plant Biology Pub Date : 2024-04-26 DOI: 10.1071/fp23205
E. Solomonova, N. Shoman, A. Akimov
{"title":"Physiological responses of the microalgae Thalassiosira weissflogii to the presence of the herbicide glyphosate in the medium","authors":"E. Solomonova, N. Shoman, A. Akimov","doi":"10.1071/fp23205","DOIUrl":"https://doi.org/10.1071/fp23205","url":null,"abstract":"We evaluated changes in growth, chlorophyll fluorescence and basic physiological and biochemical parameters of the microalgae Thalassiosira weissflogii cells under the influence of the herbicide glyphosate in concentrations 0, 25, 95 and 150 μg L−1. The toxic effect of glyphosate on algae is weakly dependent on the level of cell mineral nutrition. High concentrations of the herbicide do not lead to the death of microalgae but block the process of algae cell division. An increase in the glyphosate concentration in the medium leads to a slowdown or stop of algal growth, a decrease in their final biomass, an increase in the production of reactive oxygen species (ROS), depolarisation of mitochondrial membranes and metabolic activity of algae. Glyphosate inhibits the photosynthetic activity of cells and inhibits the relative rate of electron transport in the photosynthetic apparatus. Glyphosate at the studied concentrations does not affect the size characteristics of cells and the intracellular content of chlorophyll in T. weissflogii. The studied herbicide or products of its decay retain their toxic properties in the environment for at least 9 days. This result shows the need for further in-depth studies to assess the physiological response and possible acclimation changes in the functional state of oxygenic phototrophs in response to the herbicide action. The species specificity of microalgae to the effects of glyphosate in natural conditions is potentially dangerous due to a possible change in the species structure of biocoenoses, in particular, a decrease in the contribution of diatoms.","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140652336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced photochemical efficiency of PSII in Prosopis juliflora suggests contribution to invasion advantage over native C 3 xero-halophytes under salt stress 糙叶树 PSII 光化学效率的提高表明,在盐胁迫下,糙叶树比本地 C 3 零生高叶植物具有更强的入侵优势
IF 3 4区 生物学
Functional Plant Biology Pub Date : 2024-04-26 DOI: 10.1071/fp23272
Ahmad Zia, Salman Gulzar, Alexander V. Ruban
{"title":"Enhanced photochemical efficiency of PSII in Prosopis juliflora suggests contribution to invasion advantage over native C 3 xero-halophytes under salt stress","authors":"Ahmad Zia, Salman Gulzar, Alexander V. Ruban","doi":"10.1071/fp23272","DOIUrl":"https://doi.org/10.1071/fp23272","url":null,"abstract":"<p>Chlorophyll <i>a</i> fluorescence parameters related to PSII photochemistry, photoprotection and photoinhibition were investigated in four C<sub>3</sub> plant species growing in their natural habitat: <i>Prosopis juliflora</i>; <i>Abutilon indicum</i>; <i>Salvadora persica</i>; and <i>Phragmites karka</i>. This study compared the light reaction responses of <i>P. juliflora</i>, an invasive species, with three native co-existing species, which adapt to varying water deficit and high salt stress. Chlorophyll <i>a</i> fluorescence quenching analyses revealed that <i>P. juliflora</i> had the highest photochemical quantum efficiency and yield, regulated by higher fraction of open reaction centres and reduced photoprotective energy dissipation without compromising the integrity of photosynthetic apparatus due to photoinhibition. Moreover, the elevated values of parameters obtained through polyphasic chlorophyll <i>a</i> fluorescence induction kinetics, which characterise the photochemistry of PSII and electron transport, highlighted the superior performance index of energy conservation in the transition from excitation to the reduction of intersystem electron carriers for <i>P. juliflora</i> compared to other species. Enhanced pigment contents and their stoichiometry in <i>P. juliflora</i> apparently contributed to upregulating fluxes and yields of energy absorbance, trapping and transport. This enhanced photochemistry, along with reduced non-photochemical processes, could explain the proclivity for invasion advantage in <i>P. juliflora</i> across diverse stress conditions.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overexpression of TaMPK3 enhances freezing tolerance by increasing the expression of ICE-CBF-COR related genes in the Arabidopsis thaliana 通过增加拟南芥中 ICE-CBF-COR 相关基因的表达,过表达 TaMPK3 增强拟南芥的抗冻性
IF 3 4区 生物学
Functional Plant Biology Pub Date : 2024-04-26 DOI: 10.1071/fp23144
Rui Wang, Mengmeng Yu, Xin Zhao, Jingqiu Xia, Jing Cang, Da Zhang
{"title":"Overexpression of TaMPK3 enhances freezing tolerance by increasing the expression of ICE-CBF-COR related genes in the Arabidopsis thaliana","authors":"Rui Wang, Mengmeng Yu, Xin Zhao, Jingqiu Xia, Jing Cang, Da Zhang","doi":"10.1071/fp23144","DOIUrl":"https://doi.org/10.1071/fp23144","url":null,"abstract":"Mitogen-activated protein kinases (MAPKs) play important roles in plant stress response. As a major member of the MAPK family, MPK3 has been reported to participate in the regulation of chilling stress. However, the regulatory function of wheat (Triticum aestivum) mitogen-activated protein kinase TaMPK3 in freezing tolerance remains unknown. Dongnongdongmai No.1 (Dn1) is a winter wheat variety with strong freezing tolerance; therefore, it is important to explore the mechanisms underlying this tolerance. In this study, the expression of TaMPK3 in Dn1 was detected under low temperature and hormone treatment. Gene cloning, bioinformatics and subcellular localisation analyses of TaMPK3 in Dn1 were performed. Overexpressed TaMPK3 in Arabidopsis thaliana was obtained, and freezing tolerance phenotype observations, physiological indices and expression levels of ICE-C-repeat binding factor (CBF)-COR-related genes were determined. In addition, the interaction between TaMPK3 and TaICE41 proteins was detected. We found that TaMPK3 expression responds to low temperatures and hormones, and the TaMPK3 protein is localised in the cytoplasm and nucleus. Overexpression of TaMPK3 in Arabidopsis significantly improves freezing tolerance. TaMPK3 interacts with the TaICE41 protein. In conclusion, TaMPK3 is involved in regulating the ICE-CBF-COR cold resistance module through its interaction with TaICE41, thereby improving freezing tolerance in Dn1 wheat.","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140652073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Responses to lead stress in Scrophularia striata: insights into antioxidative defence mechanisms and changes in flavonoids profile 横纹木莲对铅应激的反应:对抗氧化防御机制和黄酮类化合物变化的认识
IF 3 4区 生物学
Functional Plant Biology Pub Date : 2024-04-22 DOI: 10.1071/fp23236
Reyhaneh Danaeipour, Mohsen Sharifi, Azam Noori
{"title":"Responses to lead stress in Scrophularia striata: insights into antioxidative defence mechanisms and changes in flavonoids profile","authors":"Reyhaneh Danaeipour, Mohsen Sharifi, Azam Noori","doi":"10.1071/fp23236","DOIUrl":"https://doi.org/10.1071/fp23236","url":null,"abstract":"<p>Lead (Pb) induces oxidative stress in plants, which results in different responses, including the production of antioxidants and changes in the profile of secondary metabolites. In this study, the responses of <i>Scrophularia striata</i> exposed to 250 mg L<sup>−1</sup> Pb (NO<sub>3</sub>)<sub>2</sub> in a hydroponic environment were determined. Growth parameters, oxidative and antioxidative responses, redox status, and the concentration of Pb were analysed in roots and shoots. Malondialdehyde and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) levels in the roots were significantly increased and reached their highest value at 72 h after Pb treatment. Superoxide dismutase, catalase, and peroxidase, as an enzymatic antioxidant system, were responsible for reactive oxygen species scavenging, where their activities were increased in the shoot and root of Pb-treated plants. Enzymatic antioxidant activities were probably not enough to remove a significant H<sub>2</sub>O<sub>2</sub> content in response to Pb treatment. Therefore, other defence responses were activated. The results stated that the flavonoid components of <i>S. striata</i> progressed towards the increase of isoflavone, flavanol, and stilbenoid contents under Pb treatment. In general, <i>S. striata</i> stimulates the enzymatic defence system and activates the non-enzymatic system by modulating the profile of flavonoids toward the production of flavonoids with high antioxidant activity, such as quercetin and myricetin in response to Pb stress.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140802268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信