Elisabeth Traiffort, Abdelmoumen Kassoussi, Amina Zahaf
{"title":"Revisiting the role of sexual hormones in the demyelinated central nervous system.","authors":"Elisabeth Traiffort, Abdelmoumen Kassoussi, Amina Zahaf","doi":"10.1016/j.yfrne.2024.101172","DOIUrl":"https://doi.org/10.1016/j.yfrne.2024.101172","url":null,"abstract":"<p><p>Sex-related differences characterize multiple sclerosis, an autoimmune, inflammatory and neurodegenerative disease displaying higher incidence in females as well as discrepancies in susceptibility and progression. Besides clinical specificities, molecular and cellular differences related to sex hormones were progressively uncovered improving our understanding of the mechanisms involved in this disabling disease. The most recent findings may give rise to the identification of novel therapeutic perspectives that could meet the urgent need for a treatment preventing the transition from the recurrent- to the progressive form of the disease. The present review is an update of our current knowledge about progestagens, androgens and estrogens in the context of CNS demyelination including their synthesis, the impact of their dysregulation, the preclinical and clinical data presently available, the main molecular dimorphisms related to these hormones and their age-related changes and relationship with failure of spontaneous remyelination, likely impacting the inexorable progression of multiple sclerosis towards irreversible disabilities.</p>","PeriodicalId":12469,"journal":{"name":"Frontiers in Neuroendocrinology","volume":" ","pages":"101172"},"PeriodicalIF":6.5,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Menstrually-related mood disorders and postpartum depression: Convergent aspects in aetiology.","authors":"D Islas-Preciado, E Estrada-Camarena, L A M Galea","doi":"10.1016/j.yfrne.2024.101171","DOIUrl":"10.1016/j.yfrne.2024.101171","url":null,"abstract":"<p><p>Females diagnosed with Menstrually-related mood disorders (MRMDs) have more risk to develop postpartum depression (PPD). There are overlapping symptoms between MRMDs and PPD such as anxiety, depressed mood, irritability, that can contribute to a lower quality of life. MRMDs and PPD share components in their etiology such as dramatic hormonal oscillations, and alterations in Hypothalamus-Pituitary-Adrenal (HPA) axis activity that may impair GABAergic neurotransmission. As well, stressful events that impact HPA regulation may play an important role in the etiology of MRMDs and PPD. Here we review common hormone fluctuations across the menstrual cycle and pregnancy/postpartum to identify shared pathways that could contribute to greater sensitivity in people with MRMDs and PPD. This review summarizes hormone sensitivity, HPA axis activity and neurosteroids effects on GABAergic transmission and the potential role of chronic stress in developing MRMDs and PPD. In addition, other potential etiopathological factors, such as serotonin and the immune system, are discussed. Investigating the etiopathology of MRMDs and PDD will help to better understand the complexity of factors involved in these disorders that affect females across the reproductive years.</p>","PeriodicalId":12469,"journal":{"name":"Frontiers in Neuroendocrinology","volume":" ","pages":"101171"},"PeriodicalIF":6.5,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142784683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonathan J Hirst, Hannah K Palliser, Carlton Pavy, Julia C Shaw, Roisin A Moloney
{"title":"Neurosteroid replacement approaches for improving outcomes after compromised pregnancies and preterm birth.","authors":"Jonathan J Hirst, Hannah K Palliser, Carlton Pavy, Julia C Shaw, Roisin A Moloney","doi":"10.1016/j.yfrne.2024.101169","DOIUrl":"10.1016/j.yfrne.2024.101169","url":null,"abstract":"<p><p>The levels of the key neurosteroid of pregnancy, allopregnanolone, are very high in the fetal and maternal brain compared to after birth. These levels are maintained by the placenta which forms a placental connection to fetal brain development. Maternal stresses depress placental synthesis resulting in a fall in allopregnanolone levels leading to deficits in myelination that continue into childhood. This contributes to an increased incidence of behavioural disorders. Supplementing neurosteroid action with allopregnanolone analogues or raising endogenous production with mitochondrial translocator protein (TSPO) ligands reverses these deficits. Preterm birth leads to an early dramatic loss of neurosteroid support for brain development leading to marked deficits in myelination and susceptibility to hypoxic-ischaemic injury. Postnatal treatment with the allopregnanolone analogue ganaxolone improves myelination and reduces hyperactive behaviour. TSPO ligands such as emapunil have been shown to improve oligodendrocyte maturation. These findings support the use of allopregnanolone supplementation approaches after pregnancy compromises to improve outcome.</p>","PeriodicalId":12469,"journal":{"name":"Frontiers in Neuroendocrinology","volume":" ","pages":"101169"},"PeriodicalIF":6.5,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142767785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amy Mann, Jennifer Kalitsi, Khushali Jani, Daniel Martins, Ritika R Kapoor, Yannis Paloyelis
{"title":"The oxytocin system in patients with craniopharyngioma: A systematic review.","authors":"Amy Mann, Jennifer Kalitsi, Khushali Jani, Daniel Martins, Ritika R Kapoor, Yannis Paloyelis","doi":"10.1016/j.yfrne.2024.101170","DOIUrl":"10.1016/j.yfrne.2024.101170","url":null,"abstract":"<p><p>Craniopharyngioma is a benign tumour affecting the hypothalamic and pituitary regions, which are involved in the production and secretion of oxytocin. We conducted a systematic review to assess dysregulation of the oxytocin system in craniopharyngioma and associations with neurobehavioural, eating, and metabolic abnormalities. Eight studies (n = 72 patients) were included. Evidence for dysfunction of the endogenous oxytocin system in craniopharyngioma is limited and mixed. While no significant differences in baseline salivary oxytocin concentrations were reported between patients with craniopharyngioma and controls, patients with craniopharyngioma were found to have blunted salivary oxytocin response following exercise stimulation and this was associated with greater state anxiety and higher BMI. Studies administering exogenous oxytocin are sparse and do not meet required standards. Hypothalamic damage may pose an additional mechanism of oxytocin dysregulation. Improving understanding of the oxytocin system in craniopharyngioma could be pivotal for exploring the potential therapeutic role of exogenous oxytocin in this condition.</p>","PeriodicalId":12469,"journal":{"name":"Frontiers in Neuroendocrinology","volume":" ","pages":"101170"},"PeriodicalIF":6.5,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142767788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unraveling sex differences in maternal and paternal care impacts on social behaviors and neurobiological responses to early-life adversity","authors":"Shakeera L. Walker , Erica R. Glasper","doi":"10.1016/j.yfrne.2024.101162","DOIUrl":"10.1016/j.yfrne.2024.101162","url":null,"abstract":"<div><div>Early-life stress (ELS) affects the development of prosocial behaviors and social-cognitive function, often leading to structural brain changes and increased psychosocial disorders. Recent studies suggest that mother- and father-child relationships independently influence social development in a sex-specific manner, but the effects of impaired father-child relationships are often overlooked. This review examines preclinical rodent studies to explore how parental neglect impacts neuroplasticity and social behaviors in offspring. We highlight that disruptions in maternal interactions may affect male pups more in uniparental rodents, while impaired paternal interactions in biparental rodents tend to impact female pups more. Due to limited research, the separate effects of maternal and paternal neglect on brain development and social behaviors in biparental species remain unclear. Addressing these gaps could clarify the sex-specific mechanisms underlying social and neurobiological deficits following parental neglect.</div></div>","PeriodicalId":12469,"journal":{"name":"Frontiers in Neuroendocrinology","volume":"76 ","pages":"Article 101162"},"PeriodicalIF":6.5,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cellas A. Hayes , Destiny Wilson , Miguel A. De Leon , Mubarak Jolayemi Mustapha , Sharon Morales , Michelle C. Odden , Nicole M. Ashpole
{"title":"Insulin-like growth factor-1 and cognitive health: Exploring cellular, preclinical, and clinical dimensions","authors":"Cellas A. Hayes , Destiny Wilson , Miguel A. De Leon , Mubarak Jolayemi Mustapha , Sharon Morales , Michelle C. Odden , Nicole M. Ashpole","doi":"10.1016/j.yfrne.2024.101161","DOIUrl":"10.1016/j.yfrne.2024.101161","url":null,"abstract":"<div><div>Age and insulin-like growth factor-1 (IGF-1) have an inverse association with cognitive decline and dementia. IGF-1 is known to have important pleiotropic functions beginning in neurodevelopment and extending into adulthood such as neurogenesis. At the cellular level, IGF-1 has pleiotropic signaling mechanisms through the IGF-1 receptor on neurons and neuroglia to attenuate inflammation, promote myelination, maintain astrocytic functions for homeostatic balances, and neuronal synaptogenesis. In preclinical rodent models of aging and transgenic models of IGF-1, increased IGF-1 improves cognition in a variety of behavioral paradigms along with reducing IGF-1 via knockout models being able to induce cognitive impairment. At the clinical levels, most studies highlight that increased levels of IGF-1 are associated with better cognition. This review provides a comprehensive and up-to-date evaluation of the association between IGF-1 and cognition at the cellular signaling levels, preclinical, and clinical levels.</div></div>","PeriodicalId":12469,"journal":{"name":"Frontiers in Neuroendocrinology","volume":"76 ","pages":"Article 101161"},"PeriodicalIF":6.5,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Progestagens and progesterone receptor modulation: Effects on the brain, mood, stress, and cognition in females","authors":"Celine Bencker , Laura Gschwandtner , Sibel Nayman , Ramunė Grikšienė , Billie Nguyen , Urs M. Nater , Rachida Guennoun , Inger Sundström-Poromaa , Belinda Pletzer , Marie Bixo , Erika Comasco","doi":"10.1016/j.yfrne.2024.101160","DOIUrl":"10.1016/j.yfrne.2024.101160","url":null,"abstract":"<div><div>Progesterone is a highly lipophilic gonadal hormone that can influence behavior and mental health through its receptors in the brain. Fluctuations in progesterone levels across critical periods of a females life are associated with increased susceptibility to mental conditions.</div><div>This review highlights the effects of progestagens, including progesterone and synthetic progestins, on the brain, mood, stress, and cognition in females. The primary focus is on experimental pharmacological research that teases out the distinct effects of progestagens from those of estrogens. Additionally, the key literature on puberty, the menstrual cycle, pregnancy, perimenopause, hormonal contraceptives, and menopausal hormone therapy is reviewed, although conclusions are limited by the nested effects of progestagens and estrogens.</div><div>Single study-findings suggest an influence of progesterone on amygdala reactivity related to processing of emotional stimuli and memory. In patients with premenstrual dysphoric disorder, progesterone receptor modulation improves premenstrual mood symptoms and potentially enhances fronto-cingulate control over emotion processing. The interaction between progestagens and the systems involved in the regulation of stress seems to influence subjective experiences of mood and stress. Sparse studies investigating the effects of progestin-only contraceptives suggest effects of progestagens on the brain, mood, and stress. Progesterone and progestins used for contraception can influence neural processes as myelination and neuroprotection, exerting protective effects against stroke. Concerning menopausal hormonal therapy, the effects of progestins are largely unknown.</div><div>Levels of progesterone as well as type, administration route, timing, dose regimen, metabolism, and intracellular activity of progestins in hormonal contraceptives and menopausal hormonal therapy are factors whose effects remain to be elucidated. Altogether, current knowledge highlights the potential role of progestagens in females health but also calls for well-designed pharmaco-behavioral studies disentangling the effects of progestagens from those of estrogens.</div></div>","PeriodicalId":12469,"journal":{"name":"Frontiers in Neuroendocrinology","volume":"76 ","pages":"Article 101160"},"PeriodicalIF":6.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Attila Zsarnovszky , Daiana Alymbaeva , Gergely Jocsak , Csaba Szabo , Boglárka Mária Schilling-Tóth , David Sandor Kiss
{"title":"Endocrine disrupting effects on morphological synaptic plasticity","authors":"Attila Zsarnovszky , Daiana Alymbaeva , Gergely Jocsak , Csaba Szabo , Boglárka Mária Schilling-Tóth , David Sandor Kiss","doi":"10.1016/j.yfrne.2024.101157","DOIUrl":"10.1016/j.yfrne.2024.101157","url":null,"abstract":"<div><div>Neural regulation of the homeostasis depends on healthy synaptic function. Adaptation of synaptic functions to physiological needs manifests in various forms of synaptic plasticity (SP), regulated by the normal hormonal regulatory circuits. During the past several decades, the hormonal regulation of animal and human organisms have become targets of thousands of chemicals that have the potential to act as agonists or antagonists of the endogenous hormones. As the action mechanism of these endocrine disrupting chemicals (EDCs) came into the focus of research, a growing number of studies suggest that one of the regulatory avenues of hormones, the morphological form of SP, may well be a neural mechanism affected by EDCs. The present review discusses known and potential effects of some of the best known EDCs on morphological synaptic plasticity (MSP). We highlight molecular mechanisms altered by EDCs and indicate the growing need for more research in this area of neuroendocrinology.</div></div>","PeriodicalId":12469,"journal":{"name":"Frontiers in Neuroendocrinology","volume":"75 ","pages":"Article 101157"},"PeriodicalIF":6.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rafael Mineiro , Maria Rodrigues Cardoso , Ana Catarina Duarte , Cecília Santos , Jose Cipolla-Neto , Fernanda Gaspar do Amaral , Diana Costa , Telma Quintela
{"title":"Melatonin and brain barriers: The protection conferred by melatonin to the blood-brain barrier and blood-cerebrospinal fluid barrier","authors":"Rafael Mineiro , Maria Rodrigues Cardoso , Ana Catarina Duarte , Cecília Santos , Jose Cipolla-Neto , Fernanda Gaspar do Amaral , Diana Costa , Telma Quintela","doi":"10.1016/j.yfrne.2024.101158","DOIUrl":"10.1016/j.yfrne.2024.101158","url":null,"abstract":"<div><div>The blood–brain barrier and the blood-cerebrospinal fluid barrier separate the blood from brain tissue and cerebrospinal fluid. These brain barriers are important to maintain homeostasis and complex functions by protecting the brain from xenobiotics and harmful endogenous compounds. The disruption of brain barriers is a characteristic of neurologic diseases. Melatonin is a lipophilic hormone that is mainly produced by the pineal gland. The blood–brain barrier and the blood-cerebrospinal fluid barriers are melatonin-binding sites. Among the several melatonin actions, the most characteristic one is the regulation of sleep-wake cycles, melatonin has anti-inflammatory and antioxidant properties. Since brain barriers disruption can arise from inflammation and oxidative stress, knowing the influence of melatonin on the integrity of brain barriers is extremely important. Therefore, the objective of this review is to gather and discuss the available literature about the regulation of brain barriers by melatonin.</div></div>","PeriodicalId":12469,"journal":{"name":"Frontiers in Neuroendocrinology","volume":"75 ","pages":"Article 101158"},"PeriodicalIF":6.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Brain alteration of autoimmune thyroid disease: Neuropsychiatric impact, neuroimaging insights, and neurobiological implications","authors":"Qin Wei , Haiyang Zhang , Haixia Guan , Xuefei Song , Huifang Zhou","doi":"10.1016/j.yfrne.2024.101159","DOIUrl":"10.1016/j.yfrne.2024.101159","url":null,"abstract":"<div><div>Autoimmune thyroid disease (AITD) is the most common organ-specific autoimmune disease, characterized by thyroid function disorder and autoimmune imbalance. Previous studies have demonstrated the decreased quality of life and neuropsychiatric manifestations in AITD patients, including anxiety, depression, cognitive impairment and affective disorder. These problems also plague the euthyroid AITD patients. Advanced neuroimaging techniques were well carried out and employed as an explanatory instrument for the above intriguing phenomenon. In recent years, an increasing number of neuroimaging studies have reported that these neuropsychiatric manifestations are accompanied by significant structural and functional brain alterations in AITD patients, mainly involved in neurocognitive and emotional regions, despite the underlying neurobiological mechanism is still unclear. The existing studies suggest that the potential pathogenesis of the neuropsychiatric manifestations and brain alterations does not depend on a single factor, but may result from a combination of thyroid function dysfunction, metabolic disorders, dysregulated autoimmune and <em>trans</em>-synaptic degeneration.</div></div>","PeriodicalId":12469,"journal":{"name":"Frontiers in Neuroendocrinology","volume":"75 ","pages":"Article 101159"},"PeriodicalIF":6.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}