George B. Stefano , Pascal Büttiker , Simon Weissenberger , Jiri Raboch , Martin Anders
{"title":"Semaglutide与进行性神经退行性疾病的发病机制:线粒体的核心作用","authors":"George B. Stefano , Pascal Büttiker , Simon Weissenberger , Jiri Raboch , Martin Anders","doi":"10.1016/j.yfrne.2025.101217","DOIUrl":null,"url":null,"abstract":"<div><div>While mitochondria provide critical energy resources, mitochondrial dysfunction can lead to both metabolic and neurodegenerative disorders. Primary mitochondrial disorders (e.g., Leigh syndrome) are uniformly associated with profound neurodegeneration. Recent studies have also implicated mitochondrial dysfunction as a central feature of progressive neurodegenerative diseases, notably Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Huntington’s Disease. In addition to its profound impact on metabolic disease, the glucagon-like peptide-1 receptor agonist, semaglutide, has significant neuroprotective features and may limit the progression of one or more of these disorders. These observations might be explained at least in part by the impact of this drug on mitochondrial function and energy production. Collectively, these observations highlight disrupted energy homeostasis as a critical feature of neurodegenerative disease and suggest novel targets for the development of much-needed new neuropharmaceutical strategies.</div></div>","PeriodicalId":12469,"journal":{"name":"Frontiers in Neuroendocrinology","volume":"79 ","pages":"Article 101217"},"PeriodicalIF":6.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semaglutide and the pathogenesis of progressive neurodegenerative disease: the central role of mitochondria\",\"authors\":\"George B. Stefano , Pascal Büttiker , Simon Weissenberger , Jiri Raboch , Martin Anders\",\"doi\":\"10.1016/j.yfrne.2025.101217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>While mitochondria provide critical energy resources, mitochondrial dysfunction can lead to both metabolic and neurodegenerative disorders. Primary mitochondrial disorders (e.g., Leigh syndrome) are uniformly associated with profound neurodegeneration. Recent studies have also implicated mitochondrial dysfunction as a central feature of progressive neurodegenerative diseases, notably Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Huntington’s Disease. In addition to its profound impact on metabolic disease, the glucagon-like peptide-1 receptor agonist, semaglutide, has significant neuroprotective features and may limit the progression of one or more of these disorders. These observations might be explained at least in part by the impact of this drug on mitochondrial function and energy production. Collectively, these observations highlight disrupted energy homeostasis as a critical feature of neurodegenerative disease and suggest novel targets for the development of much-needed new neuropharmaceutical strategies.</div></div>\",\"PeriodicalId\":12469,\"journal\":{\"name\":\"Frontiers in Neuroendocrinology\",\"volume\":\"79 \",\"pages\":\"Article 101217\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroendocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0091302225000433\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0091302225000433","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Semaglutide and the pathogenesis of progressive neurodegenerative disease: the central role of mitochondria
While mitochondria provide critical energy resources, mitochondrial dysfunction can lead to both metabolic and neurodegenerative disorders. Primary mitochondrial disorders (e.g., Leigh syndrome) are uniformly associated with profound neurodegeneration. Recent studies have also implicated mitochondrial dysfunction as a central feature of progressive neurodegenerative diseases, notably Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Huntington’s Disease. In addition to its profound impact on metabolic disease, the glucagon-like peptide-1 receptor agonist, semaglutide, has significant neuroprotective features and may limit the progression of one or more of these disorders. These observations might be explained at least in part by the impact of this drug on mitochondrial function and energy production. Collectively, these observations highlight disrupted energy homeostasis as a critical feature of neurodegenerative disease and suggest novel targets for the development of much-needed new neuropharmaceutical strategies.
期刊介绍:
Frontiers in Neuroendocrinology (FIN) publishes a wide range of informative articles including comprehensive reviews, systematic reviews, opinion pieces, and meta-analyses. While the majority of reviews are invited, we also embrace unsolicited reviews and meta-analyses, as well as proposals for thematic special issues, provided they meet our rigorous quality standards. In addition, we encourage authors to submit commentaries that concisely present fresh ideas or offer further analysis to delve deeper into the implications of an article published in our journal.