Free Radical Research最新文献

筛选
英文 中文
Trafficking of oxidative stress-generated lipid hydroperoxides: pathophysiological implications. 氧化应激产生的脂质氢过氧化物的运输:病理生理学意义。
IF 3.3 3区 生物学
Free Radical Research Pub Date : 2023-02-01 Epub Date: 2023-05-16 DOI: 10.1080/10715762.2023.2213817
Albert W Girotti, Witold Korytowski
{"title":"Trafficking of oxidative stress-generated lipid hydroperoxides: pathophysiological implications.","authors":"Albert W Girotti, Witold Korytowski","doi":"10.1080/10715762.2023.2213817","DOIUrl":"10.1080/10715762.2023.2213817","url":null,"abstract":"<p><p>Lipid hydroperoxides (LOOHs) are reactive intermediates that arise during peroxidation of unsaturated phospholipids, glycolipids and cholesterol in biological membranes and lipoproteins. Non-physiological lipid peroxidation (LPO) typically occurs under oxidative stress conditions associated with pathologies such as atherogenesis, neurodegeneration, and carcinogenesis. As key intermediates in the LPO process, LOOHs are susceptible to one-electron versus two-electron reductive turnover, the former exacerbating membrane or lipoprotein damage/dysfunction and the latter diminishing it. A third possible LOOH fate is translocation to an acceptor membrane/lipoprotein, where one- or two-electron reduction may then ensue. In the case of cholesterol (Ch)-derived hydroperoxides (ChOOHs), translocation can be specifically stimulated by StAR family trafficking proteins, which are normally involved in Ch homeostasis and Ch-mediated steroidogenesis. In this review, we discuss how these processes can be impaired by StAR-mediated ChOOH and Ch co-trafficking to mitochondria of vascular macrophages and steroidogenic cells, respectively. The protective effects of endogenous selenoperoxidase, GPx4, are also discussed. This is the first known example of detrimental ChOOH transfer <i>via</i> a natural Ch trafficking pathway and inhibition thereof by GPx4.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":"57 2","pages":"130-139"},"PeriodicalIF":3.3,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10405667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10003189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydroperoxyl radical (HOO) as a reducing agent: unexpected synergy with antioxidants. A review. 氢过氧自由基(HOO•)作为还原剂:与抗氧化剂意想不到的协同作用。复习一下。
IF 3.3 3区 生物学
Free Radical Research Pub Date : 2023-02-01 DOI: 10.1080/10715762.2023.2212121
Andrea Baschieri, Zongxin Jin, Riccardo Amorati
{"title":"Hydroperoxyl radical (HOO<sup>•</sup>) as a reducing agent: unexpected synergy with antioxidants. A review.","authors":"Andrea Baschieri,&nbsp;Zongxin Jin,&nbsp;Riccardo Amorati","doi":"10.1080/10715762.2023.2212121","DOIUrl":"https://doi.org/10.1080/10715762.2023.2212121","url":null,"abstract":"Abstract This review highlights the progress made in recent years in harnessing the peculiar chemistry of the hydroperoxyl, or perhydroxyl, radical (HOO•) during lipid peroxidation, particularly with regard to its interaction with antioxidants. The HOO• radical, the protonated form of superoxide, plays an important role in the propagation and termination of lipid peroxidation in nonaqueous systems. However, differently from alkylperoxyl (ROO•) radicals that have only oxidizing ability, HOO• has a two-faced oxidizing and reducing activity. The HOO• radical can reduce the radical of the antioxidant (phenols and aromatic amines) by H-atom transfer (A• + HOO• ⟶ AH + O2) thus increasing the length of the inhibition period and the effectiveness of the antioxidant. The simultaneous presence of HOO• and ROO• radicals triggers the catalytic antioxidant activity of quinones and nitroxides and explains the antioxidant activity of melanin-like polymers. The HOO• radical can be formed by fragmentation of ROO• radicals deriving from amines, alcohols, substituted alkenes and may be present at low concentrations in many oxidizing systems. Pro-aromatic compounds, like the natural essential oil component γ-terpinene, are the most effective sources of HOO• and behave as co-antioxidants in the presence of nitroxides or quinones. The future developments and applications of HOO• chemistry in the context of the inhibition of autoxidation are also discussed.","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":"57 2","pages":"115-129"},"PeriodicalIF":3.3,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9616476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Current understanding of plasma-activated solutions for potential cancer therapy. 目前对潜在癌症治疗的血浆活化溶液的了解。
IF 3.3 3区 生物学
Free Radical Research Pub Date : 2023-02-01 DOI: 10.1080/10715762.2023.2193308
Nobuhisa Yoshikawa, Kae Nakamura, Hiroaki Kajiyama
{"title":"Current understanding of plasma-activated solutions for potential cancer therapy.","authors":"Nobuhisa Yoshikawa,&nbsp;Kae Nakamura,&nbsp;Hiroaki Kajiyama","doi":"10.1080/10715762.2023.2193308","DOIUrl":"https://doi.org/10.1080/10715762.2023.2193308","url":null,"abstract":"<p><p>Cancer therapy consists of multidisciplinary treatment combining surgery, chemotherapy, radiotherapy, and immunotherapy. Despite the elucidation of cancer mechanisms by comprehensive genomic and epigenomic analyses and the development of molecular therapy, drug resistance and severe side effects have presented challenges to the long-awaited development of new therapies. With the rapid technological advances in the last decade, there are now reports concerning potential applications of non-equilibrium atmospheric pressure plasma (NEAPP) in cancer therapy. Two approaches have been tried: direct irradiation with NEAPP (direct plasma) and the administration of a liquid (e.g. culture medium, saline, Ringer's lactate) activated by NEAPP (plasma-activated solutions: PAS). Direct plasma is a unique treatment method in which various active species, charged ions, and photons are delivered to the affected area, but the direct plasma approach has physical limitations related to the device used, such as a limited depth of reach and limited irradiation area. PAS is a liquid that contains reactive oxygen species generated by PAS, and it has been confirmed to have antitumor activity that functions in the same manner as direct plasma. This review introduces recent studies of PAS and informs researchers about the potential of PAS for cancer therapy.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":"57 2","pages":"69-80"},"PeriodicalIF":3.3,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9677883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Cancer-specific cytotoxicity of Ringer's acetate solution irradiated by cold atmospheric pressure plasma. 冷大气压等离子体辐照林格氏醋酸溶液的癌症特异性细胞毒性。
IF 3.3 3区 生物学
Free Radical Research Pub Date : 2023-02-01 DOI: 10.1080/10715762.2023.2201390
Camelia Miron, Kenji Ishikawa, Satoshi Kashiwagura, Yuki Suda, Hiromasa Tanaka, Kae Nakamura, Hiroaki Kajiyama, Shinya Toyokuni, Masaaki Mizuno, Masaru Hori
{"title":"Cancer-specific cytotoxicity of Ringer's acetate solution irradiated by cold atmospheric pressure plasma.","authors":"Camelia Miron,&nbsp;Kenji Ishikawa,&nbsp;Satoshi Kashiwagura,&nbsp;Yuki Suda,&nbsp;Hiromasa Tanaka,&nbsp;Kae Nakamura,&nbsp;Hiroaki Kajiyama,&nbsp;Shinya Toyokuni,&nbsp;Masaaki Mizuno,&nbsp;Masaru Hori","doi":"10.1080/10715762.2023.2201390","DOIUrl":"https://doi.org/10.1080/10715762.2023.2201390","url":null,"abstract":"<p><p>Cold atmospheric pressure plasmas are promising medical tools that can assist in cancer treatment. While the medical pathology mechanism is substantially understood, knowledge of the contribution of reactive species formed in plasma and the mode of activation of biochemical pathways is insufficient. Herein, we present a concept involving antitumoral plasma-activated organics, which is envisaged to increase cytotoxicity levels against cancer cells. Ringer's acetate solution was irradiated by low-temperature plasma at atmospheric pressure and possible reaction pathways of the compound generation are presented. The chemical compounds formed by plasma treatment and their effects on non-tumorigenic breast epithelial cells (MCF-10A) and breast cancer cells (MCF-7) were investigated. The cell viability results have shown that plasma-derived compounds have both, stimulatory and inhibitory effects on cell viability, depending on the concentration of the generated compounds in the irradiated liquids. Previous studies have shown that oxidative stresses involving reactive oxygen and nitrogen species (RONS) can be used to kill cancer cells. Hence, while RONS offers promising first-step killing effects, cell viability results have shown that plasma-derived compounds, such as acetic anhydride and ethyl acetate, have the potential to play important roles in plasma-based cancer therapy.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":"57 2","pages":"91-104"},"PeriodicalIF":3.3,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9622168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effects of two- and twelve-weeks sodium-glucose cotransporter 2 inhibition on DNA and RNA oxidation: two randomized, placebo-controlled trials. 2周和12周钠-葡萄糖共转运蛋白2抑制对DNA和RNA氧化的影响:两项随机、安慰剂对照试验
IF 3.3 3区 生物学
Free Radical Research Pub Date : 2023-02-01 DOI: 10.1080/10715762.2023.2213820
Emil L Larsen, Andreas Andersen, Laura K Kjaer, Mie K Eickhoff, Marie Frimodt-Møller, Frederik Persson, Peter Rossing, Jens Lykkesfeldt, Filip K Knop, Tina Vilsbøll, Jørgen Rungby, Henrik E Poulsen
{"title":"Effects of two- and twelve-weeks sodium-glucose cotransporter 2 inhibition on DNA and RNA oxidation: two randomized, placebo-controlled trials.","authors":"Emil L Larsen,&nbsp;Andreas Andersen,&nbsp;Laura K Kjaer,&nbsp;Mie K Eickhoff,&nbsp;Marie Frimodt-Møller,&nbsp;Frederik Persson,&nbsp;Peter Rossing,&nbsp;Jens Lykkesfeldt,&nbsp;Filip K Knop,&nbsp;Tina Vilsbøll,&nbsp;Jørgen Rungby,&nbsp;Henrik E Poulsen","doi":"10.1080/10715762.2023.2213820","DOIUrl":"https://doi.org/10.1080/10715762.2023.2213820","url":null,"abstract":"<p><p>Animal studies have shown that SGLT2 inhibition decreases oxidative stress, which may explain the cardiovascular protective effects observed following SGLT2 inhibition treatment. Thus, we investigated the effects of two and twelve weeks SGLT2 inhibition on DNA and RNA oxidation. Individuals with type 2 diabetes (<i>n</i> = 31) were randomized to two weeks of treatment with the SGLT2 inhibitor empagliflozin treatment (25 mg once daily) or placebo. The primary outcome was changes in DNA and RNA oxidation measured as urinary excretion of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), respectively. In another trial, individuals with type 2 diabetes (<i>n</i> = 35) were randomized to twelve weeks of dapagliflozin treatment (10 mg once daily) or placebo in a crossover study. Changes in urinary excretion of 8-oxodG and 8-oxoGuo were investigated as a <i>posthoc</i> analysis. Compared with placebo treatment, two weeks of empagliflozin treatment did not change urinary excretion of 8-oxodG (between-group difference: 0.3 nmol/24-hour (95% CI: -4.2 to 4.8)) or 8-oxoGuo (1.3 nmol/24-hour (95% CI: -4.7 to 7.3)). From a mean baseline 8-oxodG/creatinine urinary excretion of 1.34 nmol/mmol, dapagliflozin-treated individuals changed 8-oxodG/creatinine by -0.17 nmol/mmol (95% CI: -0.29 to -0.04) following twelve weeks of treatment, whereas placebo-treated individuals did not change 8-oxodG/creatinine (within-group effect: 0.10 nmol/mmol (95% CI: -0.02 to 0.22)) resulting in a significant between-group difference (<i>p</i> = 0.01). Urinary excretion of 8-oxoGuo was unaffected by dapagliflozin treatment. In conclusion, two weeks of empagliflozin treatment did not change DNA or RNA oxidation. However, a <i>posthoc</i> analysis revealed that longer-term dapagliflozin treatment decreased DNA oxidation. <b>Clinicaltrials.gov:</b> NCT02890745 and NCT02914691.HighlightsPlasma ferritin correlated with DNA and RNA oxidation in individuals with T2D.Twelve weeks dapagliflozin treatment decreased DNA oxidation.Dapagliflozin and empagliflozin treatment did not change RNA oxidation.Lipid peroxidation was unaffected by two weeks empagliflozin treatment.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":"57 2","pages":"140-151"},"PeriodicalIF":3.3,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9980737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Free radical scavenging activity of gallic acid toward various reactive oxygen, nitrogen, and sulfur species: a DFT approach. 没食子酸对各种活性氧、氮和硫的自由基清除活性:DFT方法。
IF 3.3 3区 生物学
Free Radical Research Pub Date : 2023-02-01 DOI: 10.1080/10715762.2023.2197556
Ankit Mittal, Vinod Kumar Vashistha, Dipak Kumar Das
{"title":"Free radical scavenging activity of gallic acid toward various reactive oxygen, nitrogen, and sulfur species: a DFT approach.","authors":"Ankit Mittal,&nbsp;Vinod Kumar Vashistha,&nbsp;Dipak Kumar Das","doi":"10.1080/10715762.2023.2197556","DOIUrl":"https://doi.org/10.1080/10715762.2023.2197556","url":null,"abstract":"<p><p>Gallic acid is a well-recognized naturally occurring compound possessing antioxidant activities. The free radical scavenging ability of gallic acid for fifty reactive species, such as oxygen, nitrogen, and sulfur-containing species, has been studied using the formal hydrogen atom transfer mechanism. The theoretical studies have been conducted in the gas phase and aqueous solution at M05-2X/6-311++G** level using the density functional theory (DFT) calculations. The relative damaging potential of all the reactive species has been compared by investigating their hydrogen atom and electron affinity. Furthermore, a comparison of their relative reactivity was made by evaluating several global chemical reactivity descriptors. Additionally, the feasibility of scavenging the species by gallic acid has been studied by computing the redox potentials and equilibrium constants for the overall process in the aqueous solution.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":"57 2","pages":"81-90"},"PeriodicalIF":3.3,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9615960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Hypoxia induces dichotomous and reversible attenuation of T cell responses through reactive oxygen species-dependent phenotype redistribution and delay in lymphoblast proliferation. 缺氧通过活性氧依赖的表型再分配和淋巴细胞增殖的延迟诱导T细胞反应的二分性和可逆性衰减。
IF 3.3 3区 生物学
Free Radical Research Pub Date : 2023-01-01 DOI: 10.1080/10715762.2023.2178918
Dharmendra Kumar Maurya, Deepak Sharma, Santosh Kumar Sandur
{"title":"Hypoxia induces dichotomous and reversible attenuation of T cell responses through reactive oxygen species-dependent phenotype redistribution and delay in lymphoblast proliferation.","authors":"Dharmendra Kumar Maurya,&nbsp;Deepak Sharma,&nbsp;Santosh Kumar Sandur","doi":"10.1080/10715762.2023.2178918","DOIUrl":"https://doi.org/10.1080/10715762.2023.2178918","url":null,"abstract":"<p><p>As T cells transit between blood, lymphoid organs, and peripheral tissues, they experience varied levels of oxygen/hypoxia in inflamed tissues, skin, intestinal lining, and secondary lymphoid organs. Critical illness among COVID-19 patients is also associated with transient hypoxia and attenuation of T cell responses. Hypoxia is the fulcrum of altered metabolism, impaired functions, and cessation of growth of a subset of T cells. However, the restoration of normal T cell functions following transient hypoxia and kinetics of their phenotype-redistribution is not completely understood. Here, we sought to understand kinetics and reversibility of dichotomous T cell responses under sustained and transient hypoxia. We found that a subset of activated T cells accumulated as lymphoblasts under hypoxia. Further, T cells showed the normal expression of activation markers CD25 and CD69 and inflammatory cytokine secretion but a subset exhibited delayed cell proliferation under hypoxia. Increased levels of reactive oxygen species (ROS) in cytosol and mitochondria were seen during dichotomous and reversible attenuation of T cell response under hypoxia. Cell cycle analysis revealed maximum levels of cytosolic and mitochondrial ROS in dividing T cells (in S, G2, or M phase). Hypoxic T cells also showed specific attenuation of activation induced memory phenotype conversion without affecting naïve and activated T cells. Hypoxia-related attenuation of T cell proliferation was also found to be reversible in an allogeneic leukocyte specific mixed lymphocyte reaction assay. In summary, our results show that hypoxia induces a reversible delay in proliferation of a subset of T cells which is associated with obliteration of memory phenotype and specific increase in cytosolic/mitochondrial ROS levels in actively dividing subpopulation. Thus, the transient reoxygenation of hypoxic patients may restore normal T cell responses.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":"57 1","pages":"1-13"},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9234601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growth acceleration of Nile tilapia at 21 to 31 weeks of age with plasma-treated air-supplied water. 尼罗罗非鱼在21至31周龄时用等离子体处理的空气供水加速生长。
IF 3.3 3区 生物学
Free Radical Research Pub Date : 2023-01-01 DOI: 10.1080/10715762.2023.2185124
Yoshihisa Ikeda, Ryo Fukushima, Kazuki Tange, Hideki Motomura, Taiju Saito, Masafumi Jinno
{"title":"Growth acceleration of Nile tilapia at 21 to 31 weeks of age with plasma-treated air-supplied water.","authors":"Yoshihisa Ikeda,&nbsp;Ryo Fukushima,&nbsp;Kazuki Tange,&nbsp;Hideki Motomura,&nbsp;Taiju Saito,&nbsp;Masafumi Jinno","doi":"10.1080/10715762.2023.2185124","DOIUrl":"https://doi.org/10.1080/10715762.2023.2185124","url":null,"abstract":"<p><p>This study aimed to develop a technique to accelerate fish growth without using genetic modification or genome editing. We have prepared a reactor with four pairs of opposed electrodes and a high-voltage power supply for the discharge. An arc discharge generates a plasma-treated gas in the reactor. Plasma-treated gas containing active species such as nitric oxide (NO) was generated <i>via</i> an arc discharge in the atmosphere and inserted into an aquarium containing Nile tilapia. No ozone was detected in the plasma-treated gas. Plasma treatment gas was supplied to the 20 L tank at a flow rate of 10 L per minute for varying supply times. The supply duration of plasma-treated air to the water tank was 0.5, 2, 5, and 15 min. Tanks were prepared for each of these four conditions, and gas was supplied daily at the same time. We observed that on supplying plasma-treated gas to tilapia from the 16th week of age for 5 min daily, the average length of the fish at 31 weeks of age was ∼1.5 times longer than that of the control fish. All other supply time conditions were also found to grow acceleration over the control. In the 15-minute supply time condition, individual differences in body length were more significant. A sample had more growth suppression than controls. In other words, the results suggest that an excess supply of active species can cause growth inhibition. These results suggest that an optimal supply of plasma-treated gas has a growth-promoting effect on fish.Key policy highlightsThe fish growth was accelerated by supplying plasma-treated air to the tank.The amount of ozone in the plasma-treated air was below the detection limit, and a large amount of RNS, such as nitric oxide, was generated.After an experimental period of 16 to 31 weeks, the average length of fish in the most significant growth condition was 1.5 times that of the control fish.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":"57 1","pages":"21-29"},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9602330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma activated Ringer's lactate solution. 血浆激活林格氏乳酸溶液。
IF 3.3 3区 生物学
Free Radical Research Pub Date : 2023-01-01 DOI: 10.1080/10715762.2023.2182663
Hiromasa Tanaka, Masaaki Mizuno, Kenji Ishikawa, Camelia Miron, Yasumasa Okazaki, Shinya Toyokuni, Kae Nakamura, Hiroaki Kajiyama, Masaru Hori
{"title":"Plasma activated Ringer's lactate solution.","authors":"Hiromasa Tanaka,&nbsp;Masaaki Mizuno,&nbsp;Kenji Ishikawa,&nbsp;Camelia Miron,&nbsp;Yasumasa Okazaki,&nbsp;Shinya Toyokuni,&nbsp;Kae Nakamura,&nbsp;Hiroaki Kajiyama,&nbsp;Masaru Hori","doi":"10.1080/10715762.2023.2182663","DOIUrl":"https://doi.org/10.1080/10715762.2023.2182663","url":null,"abstract":"<p><p>Low-temperature plasma (LTP) has been widely used in life science. Plasma-activated solutions were defined as solutions irradiated with LTP, and water, medium, and Ringer's solutions have been irradiated with LTP to produce plasma-activated solutions. They contain chemical compounds produced by reactions among LTP, air, and solutions. Reactive oxygen and nitrogen species (RONS) are major components in plasma-activated solutions and recent studies revealed that plasma-activated organic compounds are produced in plasma-activated Ringer's lactate solution (PAL). Many <i>in vitro</i> and <i>in vivo</i> studies demonstrated that PAL exhibits anti-tumor effects on cancers, and biochemical analyses revealed intracellular molecular mechanisms of cancer cell death by PAL.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":"57 1","pages":"14-20"},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9586584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FOXO signaling pathway participates in oxidative stress-induced histone deacetylation. FOXO信号通路参与氧化应激诱导的组蛋白去乙酰化。
IF 3.3 3区 生物学
Free Radical Research Pub Date : 2023-01-01 DOI: 10.1080/10715762.2023.2190862
Mengna Zuo, Ruiying Tong, Xiaoying He, Yang Liu, Jiwei Liu, Shujun Liu, Ying Liu, Junwei Cao, Libing Ma
{"title":"FOXO signaling pathway participates in oxidative stress-induced histone deacetylation.","authors":"Mengna Zuo,&nbsp;Ruiying Tong,&nbsp;Xiaoying He,&nbsp;Yang Liu,&nbsp;Jiwei Liu,&nbsp;Shujun Liu,&nbsp;Ying Liu,&nbsp;Junwei Cao,&nbsp;Libing Ma","doi":"10.1080/10715762.2023.2190862","DOIUrl":"https://doi.org/10.1080/10715762.2023.2190862","url":null,"abstract":"<p><p>High concentrations of antioxidants can exert pro-oxidative effects, elevate the level of intracellular reactive oxygen species (ROS), and cause oxidative stress in cells. We previously found that high concentrations of curcumin, a natural polyphenol antioxidant, elevated ROS levels and upregulated the expression of histone deacetylase 1 (HDAC1) in human gastric cancer cells (hGCCs); however, its potential mechanisms and subsequent functions have not been elucidated. In the present study, we treated hGCCs with high concentrations of curcumin, detected several indicators of oxidative stress, and investigated the mechanism of curcumin-treatment-mediated HDAC1 upregulation and its effect on histone acetylation. The results showed that curcumin treatment caused oxidative stress in hGCCs and upregulated HDAC1/2 expression <i>via</i> the forkhead box O (FOXO) signaling pathway, ultimately leading to the deacetylation of histones in hGCCs. Moreover, HDAC1/2 mediates the deacetylation of FOXOs and promotes their transcription activities, implying a positive feedback loop between FOXOs and HDAC1/2. These findings present a mechanism by which oxidative stress induces histone deacetylation in hGCCs.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":"57 1","pages":"47-60"},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9239061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信