{"title":"正电荷肽(PCPs)的羟自由基清除和化学修复能力:脉冲辐射分解研究。","authors":"Chaozhong Tian, Shinichi Yamashita, Atsushi Kimura, Yui Obata, Hao Yu, Mitsumasa Taguchi","doi":"10.1080/10715762.2024.2385342","DOIUrl":null,"url":null,"abstract":"<p><p>Pulse radiolysis was employed to investigate fundamental radiation chemical reactions, which are essential in the radiation protection of DNA. Two positively charged peptides (PCPs), histidine-tyrosine-histidine (His-Tyr-His) and lysine-tyrosine-lysine (Lys-Tyr-Lys), as well as the amino acids that constitute them, were involved. The reaction rate constants for tyrosine (Tyr), histidine (His), lysine (Lys), His-Tyr-His, and Lys-Tyr-Lys with OH radicals (<sup>•</sup>OH) were (1.6 ± 0.3) × 10<sup>10</sup>, (9.0 ± 0.9) × 10<sup>9</sup>, (1.4 ± 0.3) × 10<sup>9</sup>, (1.8 ± 0.1) × 10<sup>10</sup>, and (1.0 ± 0.1) × 10<sup>10</sup> M<i><sup>-</sup></i><sup>1</sup>s<i><sup>-</sup></i><sup>1</sup>, respectively, indicating that formation of peptide bond can affect the reaction of amino acids with <sup>•</sup>OH. Observed transient absorption spectra indicated a shielding effect of the His or Lys residues at both ends of the PCPs on the centrally located Tyr. The measurement of chemical repair capabilities using deoxyguanosine monophosphate (dGMP) as a model for DNA demonstrated that the reaction rate constants of Tyr, His-Tyr-His, and Lys-Tyr-Lys with dGMP radicals were (2.2 ± 0.5) × 10<sup>8</sup>, (2.3 ± 0.1) × 10<sup>8</sup>, and (3.3 ± 0.4) × 10<sup>8</sup> M<i><sup>-</sup></i><sup>1</sup>s<i><sup>-</sup></i><sup>1</sup>, respectively, implying that the presence of a positive charge may enhance the chemical repair process.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydroxyl radical scavenging and chemical repair capabilities of positively charged peptides (PCPs): a pulse radiolysis study.\",\"authors\":\"Chaozhong Tian, Shinichi Yamashita, Atsushi Kimura, Yui Obata, Hao Yu, Mitsumasa Taguchi\",\"doi\":\"10.1080/10715762.2024.2385342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pulse radiolysis was employed to investigate fundamental radiation chemical reactions, which are essential in the radiation protection of DNA. Two positively charged peptides (PCPs), histidine-tyrosine-histidine (His-Tyr-His) and lysine-tyrosine-lysine (Lys-Tyr-Lys), as well as the amino acids that constitute them, were involved. The reaction rate constants for tyrosine (Tyr), histidine (His), lysine (Lys), His-Tyr-His, and Lys-Tyr-Lys with OH radicals (<sup>•</sup>OH) were (1.6 ± 0.3) × 10<sup>10</sup>, (9.0 ± 0.9) × 10<sup>9</sup>, (1.4 ± 0.3) × 10<sup>9</sup>, (1.8 ± 0.1) × 10<sup>10</sup>, and (1.0 ± 0.1) × 10<sup>10</sup> M<i><sup>-</sup></i><sup>1</sup>s<i><sup>-</sup></i><sup>1</sup>, respectively, indicating that formation of peptide bond can affect the reaction of amino acids with <sup>•</sup>OH. Observed transient absorption spectra indicated a shielding effect of the His or Lys residues at both ends of the PCPs on the centrally located Tyr. The measurement of chemical repair capabilities using deoxyguanosine monophosphate (dGMP) as a model for DNA demonstrated that the reaction rate constants of Tyr, His-Tyr-His, and Lys-Tyr-Lys with dGMP radicals were (2.2 ± 0.5) × 10<sup>8</sup>, (2.3 ± 0.1) × 10<sup>8</sup>, and (3.3 ± 0.4) × 10<sup>8</sup> M<i><sup>-</sup></i><sup>1</sup>s<i><sup>-</sup></i><sup>1</sup>, respectively, implying that the presence of a positive charge may enhance the chemical repair process.</p>\",\"PeriodicalId\":12411,\"journal\":{\"name\":\"Free Radical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10715762.2024.2385342\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2024.2385342","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Hydroxyl radical scavenging and chemical repair capabilities of positively charged peptides (PCPs): a pulse radiolysis study.
Pulse radiolysis was employed to investigate fundamental radiation chemical reactions, which are essential in the radiation protection of DNA. Two positively charged peptides (PCPs), histidine-tyrosine-histidine (His-Tyr-His) and lysine-tyrosine-lysine (Lys-Tyr-Lys), as well as the amino acids that constitute them, were involved. The reaction rate constants for tyrosine (Tyr), histidine (His), lysine (Lys), His-Tyr-His, and Lys-Tyr-Lys with OH radicals (•OH) were (1.6 ± 0.3) × 1010, (9.0 ± 0.9) × 109, (1.4 ± 0.3) × 109, (1.8 ± 0.1) × 1010, and (1.0 ± 0.1) × 1010 M-1s-1, respectively, indicating that formation of peptide bond can affect the reaction of amino acids with •OH. Observed transient absorption spectra indicated a shielding effect of the His or Lys residues at both ends of the PCPs on the centrally located Tyr. The measurement of chemical repair capabilities using deoxyguanosine monophosphate (dGMP) as a model for DNA demonstrated that the reaction rate constants of Tyr, His-Tyr-His, and Lys-Tyr-Lys with dGMP radicals were (2.2 ± 0.5) × 108, (2.3 ± 0.1) × 108, and (3.3 ± 0.4) × 108 M-1s-1, respectively, implying that the presence of a positive charge may enhance the chemical repair process.
期刊介绍:
Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.