Hadeel K M Alboaklah, Alister J McNeish, David S Leake
{"title":"Low density lipoprotein oxidized under lysosomal conditions decreases arterial vasodilatation.","authors":"Hadeel K M Alboaklah, Alister J McNeish, David S Leake","doi":"10.1080/10715762.2024.2403038","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial dysfunction is a risk factor for atherosclerosis and includes impaired endothelium-dependent vasodilatation. We have shown previously that low density lipoprotein (LDL) can be oxidized by iron in the lysosomes of macrophages. Macrophage lysis in atherosclerotic lesions might expose endothelial cells to this oxidized LDL and adversely affect their function. LDL was oxidized by ferrous sulfate (5 µM) for 24 h at pH 4.5 at 37 °C. Aortas from male Wistar rats were cut into rings and subjected to wire myography for isometric tension recording. The rings were incubated with or without oxidized LDL (50 µg protein/ml) for one hour, constricted with 100 nM phenylephrine and relaxation to acetylcholine (1 nM - 3 µM) was measured. There was about 50% less relaxation in the presence of this oxidized LDL. Endothelial-independent vasodilatation induced by sodium nitroprusside was less affected by oxidized LDL. Oxidized LDL increased the formation of reactive oxygen species by the aortic rings and by cultured human aortic and dermal microvascular endothelial cells, which might have inactivated nitric oxide. Acetylcholine increased the activatory phosphorylation of eNOS (ser-1177), but oxidized LDL had little effect on this activation in cultured human aortic endothelial cells. These findings raise the possibility that LDL oxidized in lysosomes and released from lysed macrophages might decrease vasodilatation in atherosclerotic arteries.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2024.2403038","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Endothelial dysfunction is a risk factor for atherosclerosis and includes impaired endothelium-dependent vasodilatation. We have shown previously that low density lipoprotein (LDL) can be oxidized by iron in the lysosomes of macrophages. Macrophage lysis in atherosclerotic lesions might expose endothelial cells to this oxidized LDL and adversely affect their function. LDL was oxidized by ferrous sulfate (5 µM) for 24 h at pH 4.5 at 37 °C. Aortas from male Wistar rats were cut into rings and subjected to wire myography for isometric tension recording. The rings were incubated with or without oxidized LDL (50 µg protein/ml) for one hour, constricted with 100 nM phenylephrine and relaxation to acetylcholine (1 nM - 3 µM) was measured. There was about 50% less relaxation in the presence of this oxidized LDL. Endothelial-independent vasodilatation induced by sodium nitroprusside was less affected by oxidized LDL. Oxidized LDL increased the formation of reactive oxygen species by the aortic rings and by cultured human aortic and dermal microvascular endothelial cells, which might have inactivated nitric oxide. Acetylcholine increased the activatory phosphorylation of eNOS (ser-1177), but oxidized LDL had little effect on this activation in cultured human aortic endothelial cells. These findings raise the possibility that LDL oxidized in lysosomes and released from lysed macrophages might decrease vasodilatation in atherosclerotic arteries.
期刊介绍:
Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.