Anna Mikołajczuk-Szczyrba, Adrian Wojtczak, Marek Kieliszek, Barbara Sokołowska
{"title":"Correction to: Characteristics and in vitro properties of potential probiotic strain Fructobacillus tropaeoli KKP 3032 isolated from orange juice.","authors":"Anna Mikołajczuk-Szczyrba, Adrian Wojtczak, Marek Kieliszek, Barbara Sokołowska","doi":"10.1007/s12223-024-01233-5","DOIUrl":"10.1007/s12223-024-01233-5","url":null,"abstract":"","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":"195"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861420/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Folia microbiologicaPub Date : 2025-02-01Epub Date: 2024-11-23DOI: 10.1007/s12223-024-01223-7
Vitaliy Kolotylo, Kamil Piwowarek, Alicja Synowiec, Marek Kieliszek
{"title":"Optimization of fermentation conditions for microbial transglutaminase production by Streptoverticillium cinnamoneum KKP 1658 using response surface methodology (RSM).","authors":"Vitaliy Kolotylo, Kamil Piwowarek, Alicja Synowiec, Marek Kieliszek","doi":"10.1007/s12223-024-01223-7","DOIUrl":"10.1007/s12223-024-01223-7","url":null,"abstract":"<p><p>Microbial transglutaminase (MTG) is an enzyme widely used in the food industry because it creates cross-links between proteins, enhancing the texture and stability of food products. Its unique properties make it a valuable tool for modifying the functional characteristics of proteins, significantly impacting the quality and innovation of food products. In this study, response surface methodology was employed to optimize the fermentation conditions for microbial transglutaminase production by the strain Streptoverticillium cinnamoneum KKP 1658. The effects of nitrogen dose, cultivation time, and initial pH on the activity of the produced transglutaminase were investigated. The significance of the examined factors was determined as follows: cultivation time > nitrogen dose > pH. The interaction between nitrogen dose and cultivation time was found to be crucial, having the second most significant impact on transglutaminase activity. Optimal conditions were identified as 48 h of cultivation with a 2% nitrogen source dose and an initial medium pH of approximately 6.0. Under these conditions, transglutaminase activity ranged from 4.5 to 5.5 U/mL. The results of this study demonstrated that response surface methodology is a promising approach for optimizing microbial transglutaminase production. Future applications of transglutaminase include the development of modern food products with improved texture and nutritional value, as well as its potential use in regenerative medicine for creating biomaterials and tissue scaffolds. This topic is particularly important and timely as it addresses the growing demand for innovative and sustainable solutions in the food and biomedical industries, contributing to an improved quality of life.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":"259-269"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861405/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Folia microbiologicaPub Date : 2025-02-01Epub Date: 2024-09-27DOI: 10.1007/s12223-024-01198-5
Kaneez Fatima, Hareem Mohsin, Maryam Afzal
{"title":"Revisiting biochemical pathways for lead and cadmium tolerance by domain bacteria, eukarya, and their joint action in bioremediation.","authors":"Kaneez Fatima, Hareem Mohsin, Maryam Afzal","doi":"10.1007/s12223-024-01198-5","DOIUrl":"10.1007/s12223-024-01198-5","url":null,"abstract":"<p><p>With the advent rise is in urbanization and industrialization, heavy metals (HMs) such as lead (Pb) and cadmium (Cd) contamination have increased considerably. It is among the most recalcitrant pollutants majorly affecting the biotic and abiotic components of the ecosystem like human well-being, animals, soil health, crop productivity, and diversity of prokaryotes (bacteria) and eukaryotes (plants, fungi, and algae). At higher concentrations, these metals are toxic for their growth and pose a significant environmental threat, necessitating innovative and sustainable remediation strategies. Bacteria exhibit diverse mechanisms to cope with HM exposure, including biosorption, chelation, and efflux mechanism, while fungi contribute through mycorrhizal associations and hyphal networks. Algae, especially microalgae, demonstrate effective biosorption and bioaccumulation capacities. Plants, as phytoremediators, hyperaccumulate metals, providing a nature-based approach for soil reclamation. Integration of these biological agents in combination presents opportunities for enhanced remediation efficiency. This comprehensive review aims to provide insights into joint action of prokaryotic and eukaryotic interactions in the management of HM stress in the environment.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":"41-54"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Folia microbiologicaPub Date : 2025-02-01Epub Date: 2024-07-02DOI: 10.1007/s12223-024-01183-y
M Kathirgamanathan, S Weerasinghe, T K Bowange, C L Abayasekara, S A Kulasooriya, R R Ratnayake
{"title":"Evaluation of co-culture of cellulolytic fungi for enhanced cellulase and xylanase activity and saccharification of untreated lignocellulosic material.","authors":"M Kathirgamanathan, S Weerasinghe, T K Bowange, C L Abayasekara, S A Kulasooriya, R R Ratnayake","doi":"10.1007/s12223-024-01183-y","DOIUrl":"10.1007/s12223-024-01183-y","url":null,"abstract":"<p><p>Bioethanol production from lignocellulosic materials is hindered by the high costs of pretreatment and the enzymes. The present study aimed to evaluate whether co-cultivation of four selected cellulolytic fungi yields higher cellulase and xylanase activities compared to the monocultures and to investigate whether the enzymes from the co-cultures yield higher saccharification on selected plant materials without thermo-chemical pretreatment. The fungal isolates, Trichoderma reesei F118, Penicillium javanicum FS7, Talaromyces sp. F113, and Talaromyces pinophilus FM9, were grown as monocultures and binary co-cultures under submerged conditions for 7 days. The cellulase and xylanase activities of the culture filtrates were measured, and the culture filtrates were employed for the saccharification of sugarcane leaves, Guinea grass leaves, and water hyacinth stems and leaves. Total reducing sugars and individual sugars released from each plant material were quantified. The co-culture of Talaromyces sp. F113 with Penicillium javanicum FS7 and of T. reesei F118 with T. pinophilus FM9 produced significantly higher cellulase activities compared to the corresponding monocultures whereas no effect was observed on xylanase activities. Overall, the highest amounts of total reducing sugars and individual sugars were obtained from Guinea grass leaves saccharified with the co-culture of T. reesei F118 with T. pinophilus FM9, yielding 63.5% saccharification. Guinea grass leaves were found to be the most susceptible to enzymatic saccharification without pre-treatment, while water hyacinth stems and leaves were the least. Accordingly, the study suggests that fungal co-cultivation could be a promising approach for the saccharification of lignocellulosic materials for bioethanol production.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":"137-145"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unravelling the secrets of soil microbiome and climate change for sustainable agroecosystems.","authors":"Rasanpreet Kaur, Saurabh Gupta, Vishal Tripathi, Alok Bharadwaj","doi":"10.1007/s12223-024-01194-9","DOIUrl":"10.1007/s12223-024-01194-9","url":null,"abstract":"<p><p>The soil microbiota exhibits an important function in the ecosystem, and its response to climate change is of paramount importance for sustainable agroecosystems. The macronutrients, micronutrients, and additional constituents vital for the growth of plants are cycled biogeochemically under the regulation of the soil microbiome. Identifying and forecasting the effect of climate change on soil microbiomes and ecosystem services is the need of the hour to address one of the biggest global challenges of the present time. The impact of climate change on the structure and function of the soil microbiota is a major concern, explained by one or more sustainability factors around resilience, reluctance, and rework. However, the past research has revealed that microbial interventions have the potential to regenerate soils and improve crop resilience to climate change factors. The methods used therein include using soil microbes' innate capacity for carbon sequestration, rhizomediation, bio-fertilization, enzyme-mediated breakdown, phyto-stimulation, biocontrol of plant pathogens, antibiosis, inducing the antioxidative defense pathways, induced systemic resistance response (ISR), and releasing volatile organic compounds (VOCs) in the host plant. Microbial phytohormones have a major role in altering root shape in response to exposure to drought, salt, severe temperatures, and heavy metal toxicity and also have an impact on the metabolism of endogenous growth regulators in plant tissue. However, shelf life due to the short lifespan and storage time of microbial formulations is still a major challenge, and efforts should be made to evaluate their effectiveness in crop growth based on climate change. This review focuses on the influence of climate change on soil physico-chemical status, climate change adaptation by the soil microbiome, and its future implications.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":"19-40"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Folia microbiologicaPub Date : 2025-02-01Epub Date: 2024-07-02DOI: 10.1007/s12223-024-01185-w
Jilong Liu, Qiulin Yue, Song Zhang, Jing Xu, Xingtao Jiang, Qun Su, Lei Sun, Baojun Li, Kunlun Li, Le Su, Lin Zhao
{"title":"A pilot study on oral microbiome in electronic cigarettes consumers versus traditional cigarettes smokers.","authors":"Jilong Liu, Qiulin Yue, Song Zhang, Jing Xu, Xingtao Jiang, Qun Su, Lei Sun, Baojun Li, Kunlun Li, Le Su, Lin Zhao","doi":"10.1007/s12223-024-01185-w","DOIUrl":"10.1007/s12223-024-01185-w","url":null,"abstract":"<p><p>Oral microorganisms are closely related to oral health, the occurrence of some oral diseases is associated with changes in the oral microbiota, and many studies have demonstrated that traditional smoking can affect the oral microbial community. However, due to the short time since the emergence of e-cigarettes, fewer studies are comparing oral microorganisms for users of e-cigarettes versus cigarettes. We collected saliva from 40 non-smokers (NS), 46 traditional cigarette smokers (TS), and 27 e-cigarette consumers (EC), aged between 18 and 35 years. We performed 16S rRNA gene sequencing on the saliva samples collected to study the effects of e-cigarettes versus traditional cigarettes on the oral microbiome. The results showed that compared with the NS group, the alpha diversity of oral flora in saliva was altered in the TS group, with no significant change in the e-cigarette group. Compared with the NS and EC groups, the relative abundance of Actinomyces and Prevotella was increased in the TS group. However, compared with the NS and TS groups, the relative abundance of Veillonella was increased, and the relative abundance of Porphyromonas and Peptostreptococcus was decreased in the EC group. These results showed that both e-cigarettes and traditional cigarettes could alter the structure and composition of oral microbiota. The use of traditional cigarettes promotes the growth of some anaerobic bacteria, which may contribute to dental decay and bad breath over time. E-cigarettes have a different effect on the structure and composition of the oral microbial community compared to conventional cigarettes. In order to better understand the effects of e-cigarettes and traditional cigarettes on users' mouths, future studies will investigate the relationship between diseases such as dental caries and periodontitis and changes in oral microbial species levels.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":"147-158"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Folia microbiologicaPub Date : 2025-02-01Epub Date: 2024-07-03DOI: 10.1007/s12223-024-01184-x
Leonardo Bandeira, Christiana Faria, Fernando Cavalcante, Ariel Mesquita, Claudia Martins, Suzana Martins
{"title":"Metabarcoding expands knowledge on diversity and ecology of rare actinobacteria in the Brazilian Cerrado.","authors":"Leonardo Bandeira, Christiana Faria, Fernando Cavalcante, Ariel Mesquita, Claudia Martins, Suzana Martins","doi":"10.1007/s12223-024-01184-x","DOIUrl":"10.1007/s12223-024-01184-x","url":null,"abstract":"<p><p>Rare and unknown actinobacteria from unexplored environments have the potential to produce new bioactive molecules. This study aimed to use 16 s rRNA metabarcoding to determine the composition of the actinobacterial community, particularly focusing on rare and undescribed species, in a nature reserve within the Brazilian Cerrado called Sete Cidades National Park. Since this is an inaccessible area without due legal authorization, it is understudied, and, therefore, its diversity and biotechnological potential are not yet fully understood, and it may harbor species with groundbreaking genetic potential. In total, 543 operational taxonomic units (OTUs) across 14 phyla were detected, with Actinobacteria (41.2%), Proteobacteria (26.5%), and Acidobacteria (14.3%) being the most abundant. Within Actinobacteria, 107 OTUs were found, primarily from the families Mycobacteriaceae, Pseudonocardiaceae, and Streptomycetaceae. Mycobacterium and Streptomyces were the predominant genera across all samples. Seventeen rare OTUs with relative abundance < 0.1% were identified, with 82.3% found in only one sample yet 25.5% detected in all units. Notable rare and transient genera included Salinibacterium, Nocardia, Actinomycetospora_01, Saccharopolyspora, Sporichthya, and Nonomuraea. The high diversity and distribution of Actinobacteria OTUs indicate the area's potential for discovering new rare species. Intensified prospection on underexplored environments and characterization of their actinobacterial diversity could lead to the discovery of new species capable of generating innovative natural products.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":"159-175"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141497600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Folia microbiologicaPub Date : 2025-02-01Epub Date: 2024-10-05DOI: 10.1007/s12223-024-01206-8
Zahra Javanmard, Maryam Pourhajibagher, Abbas Bahador
{"title":"New strategies to enhance antimicrobial photo-sonodynamic therapy based on nanosensitizers against bacterial infections.","authors":"Zahra Javanmard, Maryam Pourhajibagher, Abbas Bahador","doi":"10.1007/s12223-024-01206-8","DOIUrl":"10.1007/s12223-024-01206-8","url":null,"abstract":"<p><p>The rapid evolution and spread of multidrug resistance among bacterial pathogens has significantly outpaced the development of new antibiotics, underscoring the urgent need for alternative therapies. Antimicrobial photodynamic therapy and antimicrobial sonodynamic therapy have emerged as promising treatments. Antimicrobial photodynamic therapy relies on the interaction between light and a photosensitizer to produce reactive oxygen species, which are highly cytotoxic to microorganisms, leading to their destruction without fostering resistance. Antimicrobial sonodynamic therapy, a novel variation, substitutes ultrasound for light to activate the sonosensitizers, expanding the therapeutic reach. To increase the efficiency of antimicrobial photodynamic therapy and antimicrobial sonodynamic therapy, the combination of these two methods, known as antimicrobial photo-sonodynamic therapy, is currently being explored and considered a promising approach. Recent advances, particularly in the application of nanomaterials, have further enhanced the efficacy of these therapies. Nanosensitizers, due to their improved reactive oxygen species generation and targeted delivery, offer significant advantages in overcoming the limitations of conventional sensitizers. These breakthroughs provide new avenues for treating bacterial infections, especially multidrug-resistant strains and biofilm-associated infections. Continued research, including comprehensive clinical studies, is crucial to optimizing nanomaterial-based antimicrobial photo-sonodynamic therapy for clinical use, ensuring their effectiveness in real-world applications.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":"55-70"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Folia microbiologicaPub Date : 2025-02-01Epub Date: 2024-12-17DOI: 10.1007/s12223-024-01235-3
Pavel Řezanka, Michal Řezanka, Lucie Kyselová, Tomáš Řezanka
{"title":"Characterization of Archaea membrane lipids in radioactive springs using shotgun lipidomics.","authors":"Pavel Řezanka, Michal Řezanka, Lucie Kyselová, Tomáš Řezanka","doi":"10.1007/s12223-024-01235-3","DOIUrl":"10.1007/s12223-024-01235-3","url":null,"abstract":"<p><p>Lipids from microorganisms, and especially lipids from Archaea, are used as taxonomic markers. Unfortunately, knowledge is very limited due to the uncultivability of most Archaea, which greatly reduces the importance of the diversity of lipids and their ecological role. One possible solution is to use lipidomic analysis. Six radioactive sources were investigated, two of which are surface (Wettinquelle and Radonka) and four deep from the Svornost mine (Agricola, Behounek, C1, and Curie). A total of 15 core lipids and 82 intact polar lipids were identified from the membranes of microorganisms in six radioactive springs. Using shotgun lipidomics, typical Archaea lipids were identified in spring water, namely dialkyl glycerol tetraethers, archaeol, hydroxyarchaeol and dihydroxyarchaeol. Diverse groups of polar heads were formed in archaeal IPLs, whose polar heads are formed mainly by hexose, deoxyhexose, and phosphoglycerol. The analysis was performed using shotgun lipidomics and the structure of all molecular species was confirmed by tandem mass spectrometry. After acid hydrolysis, a mixture of polar compounds was obtained from the polar head. Further analysis by GC-MS confirmed that the carbohydrates were glucose and rhamnose. Analysis by HPLC-MS of diastereoisomers of 2-(polyhydroxyalkyl)-3-(O-tolylthiocarbamoyl)thiazolidine-4(R)-carboxylates revealed that both L-rhamnose and D-glucose are present in spring samples only in varying amounts. The glycoside composition depends on the type of spring, that is, Wettinquelle and Radonka springs are basically shallow groundwater, while the samples from the Svornost mine are deep groundwater and do not contain glycosides with rhamnose. This method enables quick screening for characteristic Archaea lipids, allowing decisions on whether to pursue further analyses, such as metagenomic analysis, to directly confirm the presence of Archaea.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":"225-233"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142834599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unraveling the treasure trove of phytochemicals in mitigating the Salmonella enterica infection.","authors":"Saurabh Soni, Lokesh Gambhir, Gaurav Sharma, Asha Sharma, Neha Kapoor","doi":"10.1007/s12223-024-01192-x","DOIUrl":"10.1007/s12223-024-01192-x","url":null,"abstract":"<p><p>Foodborne diseases triggered by various infectious micro-organisms are contributing significantly to the global disease burden as well as to increasing mortality rates. Salmonella enterica belongs to the most prevalent form of bacteria accountable for significant burden of foodborne illness across the globe. The conventional therapeutic approach to cater to Salmonella enterica-based infections relies on antibiotic therapy, but the rapid emergence of the antibiotic resistance strains of Salmonella sp. necessitates the development of alternative treatment and prevention strategies. In light of this growing concern, the scientific community is rigorously exploring novel phytochemicals harnessed from medicinally important plants as a promising approach to curb Salmonella enterica infections. A variety of phytochemicals belonging to alkaloids, phenols, flavonoid, and terpene classes are reported to exhibit their inhibitory activity against bacterial cell communication, membrane proteins, efflux pumps, and biofilm formation among drug resistant Salmonella strains. The present review article delves to discuss the emergence of antibiotic resistance among Salmonella enterica strains, various plant sources, identification of phytochemicals, and the current state of research on the use of phytochemicals as antimicrobial agents against Salmonella enterica, shedding light on the promising potential of phytochemicals in the fight against this pathogen.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":"1-17"},"PeriodicalIF":2.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}