柑橘类水果衍生的氧化铜纳米颗粒的生物活性:朝着可持续的抗菌和抗氧化解决方案。

IF 3.1 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Bhanu Krishan, Anu Kumar, Wamik Azmi, Sunny Dhiman
{"title":"柑橘类水果衍生的氧化铜纳米颗粒的生物活性:朝着可持续的抗菌和抗氧化解决方案。","authors":"Bhanu Krishan, Anu Kumar, Wamik Azmi, Sunny Dhiman","doi":"10.1007/s12223-025-01266-4","DOIUrl":null,"url":null,"abstract":"<p><p>The synthesis of CuO NPs from Citrus fruit peel waste is a noteworthy strategy for the effective repurposing utilization of waste and its application in therapeutic studies. Synthesized copper oxide nanoparticles (CuO NPs) from citrus fruit extracts displayed a dark greenish-black colour with sizes ranging from 379.41, 113.19 and 142.76 nm of lemon, orange and tangerine CuO NPs. Phytochemical screening confirmed the presence of phytochemicals in the extracts wherein lemon CuO NPs lacked flavonoids and cardiac glycosides, while orange CuO NPs lacked alkaloids and flavonoids, and tangerine CuO NPs lacked only alkaloids. The decrease in phenolic concentration in CuO NPs was attributed to complex formation with metal ions. Tangerine CuO NPs exhibited the highest antioxidant activity, while lemon CuO NPs showed the highest total antioxidant capacity. Antibacterial activity increased with CuO NP concentration, with tangerine CuO NPs displaying the highest activity against both Bacillus subtilis subtilis strain 168 and Escherichia coli strain PU-1 isolated from Ghagghar river, Haryana, India. This activity was linked to the disruption of bacterial cell membranes and oxidative stress, supported by the interaction between CuO NPs and bacterial cell components. These findings contribute to understanding of various potential applications of citrus fruit-derived CuO NPs in antimicrobial and antioxidant therapies.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biological activities of citrus fruit-derived copper oxide nanoparticles: towards sustainable antimicrobial and antioxidant solutions.\",\"authors\":\"Bhanu Krishan, Anu Kumar, Wamik Azmi, Sunny Dhiman\",\"doi\":\"10.1007/s12223-025-01266-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The synthesis of CuO NPs from Citrus fruit peel waste is a noteworthy strategy for the effective repurposing utilization of waste and its application in therapeutic studies. Synthesized copper oxide nanoparticles (CuO NPs) from citrus fruit extracts displayed a dark greenish-black colour with sizes ranging from 379.41, 113.19 and 142.76 nm of lemon, orange and tangerine CuO NPs. Phytochemical screening confirmed the presence of phytochemicals in the extracts wherein lemon CuO NPs lacked flavonoids and cardiac glycosides, while orange CuO NPs lacked alkaloids and flavonoids, and tangerine CuO NPs lacked only alkaloids. The decrease in phenolic concentration in CuO NPs was attributed to complex formation with metal ions. Tangerine CuO NPs exhibited the highest antioxidant activity, while lemon CuO NPs showed the highest total antioxidant capacity. Antibacterial activity increased with CuO NP concentration, with tangerine CuO NPs displaying the highest activity against both Bacillus subtilis subtilis strain 168 and Escherichia coli strain PU-1 isolated from Ghagghar river, Haryana, India. This activity was linked to the disruption of bacterial cell membranes and oxidative stress, supported by the interaction between CuO NPs and bacterial cell components. These findings contribute to understanding of various potential applications of citrus fruit-derived CuO NPs in antimicrobial and antioxidant therapies.</p>\",\"PeriodicalId\":12346,\"journal\":{\"name\":\"Folia microbiologica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Folia microbiologica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12223-025-01266-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia microbiologica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12223-025-01266-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

利用柑桔果皮废弃物合成氧化铜纳米粒子是有效利用柑桔果皮废弃物并将其应用于治疗性研究的重要途径。从柑橘类水果提取物中合成的氧化铜纳米粒子(CuO NPs)显示出深绿黑色,大小分别为379.41、113.19和142.76 nm,分别为柠檬、橘子和橘子的CuO NPs。植物化学筛选证实,柠檬CuO NPs提取物中存在植物化学物质,其中柠檬CuO NPs缺乏类黄酮和心苷,橙子CuO NPs缺乏生物碱和类黄酮,而橘子CuO NPs仅缺乏生物碱。氧化铜NPs中酚类物质浓度的降低是由于与金属离子形成络合物所致。橘子CuO NPs表现出最高的抗氧化能力,柠檬CuO NPs表现出最高的总抗氧化能力。CuO NP对枯草芽孢杆菌168和大肠埃希菌PU-1的抑菌活性随CuO NP浓度的增加而增加,其中柑橘CuO NP对枯草芽孢杆菌168和大肠埃希菌PU-1的抑菌活性最高。这种活性与细菌细胞膜的破坏和氧化应激有关,由CuO NPs和细菌细胞成分之间的相互作用支持。这些发现有助于了解柑橘类水果衍生的CuO NPs在抗菌和抗氧化治疗中的各种潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biological activities of citrus fruit-derived copper oxide nanoparticles: towards sustainable antimicrobial and antioxidant solutions.

The synthesis of CuO NPs from Citrus fruit peel waste is a noteworthy strategy for the effective repurposing utilization of waste and its application in therapeutic studies. Synthesized copper oxide nanoparticles (CuO NPs) from citrus fruit extracts displayed a dark greenish-black colour with sizes ranging from 379.41, 113.19 and 142.76 nm of lemon, orange and tangerine CuO NPs. Phytochemical screening confirmed the presence of phytochemicals in the extracts wherein lemon CuO NPs lacked flavonoids and cardiac glycosides, while orange CuO NPs lacked alkaloids and flavonoids, and tangerine CuO NPs lacked only alkaloids. The decrease in phenolic concentration in CuO NPs was attributed to complex formation with metal ions. Tangerine CuO NPs exhibited the highest antioxidant activity, while lemon CuO NPs showed the highest total antioxidant capacity. Antibacterial activity increased with CuO NP concentration, with tangerine CuO NPs displaying the highest activity against both Bacillus subtilis subtilis strain 168 and Escherichia coli strain PU-1 isolated from Ghagghar river, Haryana, India. This activity was linked to the disruption of bacterial cell membranes and oxidative stress, supported by the interaction between CuO NPs and bacterial cell components. These findings contribute to understanding of various potential applications of citrus fruit-derived CuO NPs in antimicrobial and antioxidant therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Folia microbiologica
Folia microbiologica 工程技术-生物工程与应用微生物
CiteScore
5.80
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: Unlike journals which specialize ever more narrowly, Folia Microbiologica (FM) takes an open approach that spans general, soil, medical and industrial microbiology, plus some branches of immunology. This English-language journal publishes original papers, reviews and mini-reviews, short communications and book reviews. The coverage includes cutting-edge methods and promising new topics, as well as studies using established methods that exhibit promise in practical applications such as medicine, animal husbandry and more. The coverage of FM is expanding beyond Central and Eastern Europe, with a growing proportion of its contents contributed by international authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信