FEMS microbiology reviews最新文献

筛选
英文 中文
The Batalogue: an overview of betacoronaviruses with future pandemic potential. Batalogue:具有未来大流行潜力的乙型冠状病毒概述。
IF 12.3 2区 生物学
FEMS microbiology reviews Pub Date : 2025-01-14 DOI: 10.1093/femsre/fuaf023
Sarah Baird, Edward C Holmes, Caroline L Ashley, James A Triccas, Megan Steain
{"title":"The Batalogue: an overview of betacoronaviruses with future pandemic potential.","authors":"Sarah Baird, Edward C Holmes, Caroline L Ashley, James A Triccas, Megan Steain","doi":"10.1093/femsre/fuaf023","DOIUrl":"10.1093/femsre/fuaf023","url":null,"abstract":"<p><p>The coronavirus disease-19 pandemic has intensified interest in the global diversity of RNA viruses and their ability to jump hosts, with a notable expansion in the number of known betacoronaviruses in wild mammalian species, particularly bats. This has enabled vaccine development research to shift its focus to include a range of severe acute respiratory syndrome coronavirus-1 and severe acute respiratory syndrome coronavirus-2 related viruses from animal species, with the intention of developing broadly protective coronavirus vaccines and therapeutics. However, there is currently a lack of synthesis of this expanding knowledge base of viruses with potential to cause another severe disease outbreak. This has led to many vaccine trials considering protection against a small subset of known betacoronaviruses that poorly approximate the true diversity of this group of viruses. This review aims to synthesize information gained from the recent surge in betacoronavirus characterization, providing a catalogue of viruses exhibiting features that pose a risk to public health, together with a framework for assessing their likelihood of emergence and subsequent transmission through human populations. This information will help inform global pandemic preparedness measures before a novel betacoronavirus outbreak occurs.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":12.3,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202883/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144173227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clostridium scindens: history and current outlook for a keystone species in the mammalian gut involved in bile acid and steroid metabolism. scindens梭状芽胞杆菌:哺乳动物肠道中参与胆汁酸和类固醇代谢的关键物种的历史和当前前景。
IF 10.1 2区 生物学
FEMS microbiology reviews Pub Date : 2025-01-14 DOI: 10.1093/femsre/fuaf016
Steven L Daniel, Jason M Ridlon
{"title":"Clostridium scindens: history and current outlook for a keystone species in the mammalian gut involved in bile acid and steroid metabolism.","authors":"Steven L Daniel, Jason M Ridlon","doi":"10.1093/femsre/fuaf016","DOIUrl":"10.1093/femsre/fuaf016","url":null,"abstract":"<p><p>Clostridium scindens is a keystone bacterial species in the mammalian gut that, while low in abundance, has a significant impact on bile acid and steroid metabolism. Numerous studies indicate that the two most studied strains of C. scindens (i.e. ATCC 35704 and VPI 12708) are important for a myriad of physiological processes in the host. We focus on both historical and current microbiological and molecular biology work on the Hylemon-Björkhem pathway and the steroid-17,20-desmolase pathway that were first discovered in C. scindens. Our most recent analysis now calls into question whether strains currently defined as C. scindens represent two separate taxonomic groups. Future directions include developing genetic tools to further explore the physiological role of bile acid and steroid metabolism by strains of C. scindens and the causal role of these pathways in host physiology and disease.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"49 ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065433/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143965061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The ecology and plasticity of fish skin and gill microbiomes: seeking what matters in health and disease. 鱼类皮肤和鳃微生物群的生态学和可塑性:寻找健康和疾病的重要因素。
IF 10.1 2区 生物学
FEMS microbiology reviews Pub Date : 2025-01-14 DOI: 10.1093/femsre/fuaf027
Jamie McMurtrie, Ashley G Bell, Joanne Cable, Ben Temperton, Charles R Tyler
{"title":"The ecology and plasticity of fish skin and gill microbiomes: seeking what matters in health and disease.","authors":"Jamie McMurtrie, Ashley G Bell, Joanne Cable, Ben Temperton, Charles R Tyler","doi":"10.1093/femsre/fuaf027","DOIUrl":"10.1093/femsre/fuaf027","url":null,"abstract":"<p><p>The microbiomes of skin and gill mucosal surfaces are critical components in fish health and homeostasis by competitively excluding pathogens, secreting beneficial compounds, and priming the immune system. Disruption of these microbiomes can compromise their capacity for disease resilience and maintaining host homeostasis. However, the extent and nature of microbiome disruption required to impact fish health negatively remains poorly understood. This review examines how various stressors influence the community composition and functionality of fish skin and gill microbiomes, and the subsequent effects on fish health. Our findings highlight that the impact of stressors on skin and gill microbiomes may differ for different body sites and are highly context-dependent, influenced by a complex interplay of host-specific factors, stressor characteristics, and environmental conditions. By evaluating current knowledge on the genesis and homeostasis of these microbiomes, we highlight a strong influence of environmental factors especially on skin and gill microbiomes compared with fish gut microbiomes, which appear to be more closely regulated by the host's homeostatic and immunological systems. This review emphasizes the importance of understanding the ecology and plasticity of fish skin and gill microbiomes to identify critical thresholds for microbiome shifts that impact fish health and disease resilience.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12218203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144511755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Foresight 2035: a perspective on the next decade of research on the management of Legionella spp. in engineered aquatic environments. 展望2035:未来十年军团菌在工程水生环境管理研究的展望。
IF 12.3 2区 生物学
FEMS microbiology reviews Pub Date : 2025-01-14 DOI: 10.1093/femsre/fuaf022
Frederik Hammes, Marco Gabrielli, Alessio Cavallaro, Antonia Eichelberg, Sofia Barigelli, Melina Bigler, Sebastien P Faucher, Hans P Füchslin, Valeria Gaia, Laura Gomez-Valero, Marianne Grimard-Conea, Charles N Haas, Kerry A Hamilton, Hannah G Healy, Yann Héchard, Tim Julian, Laurine Kieper, Ursula Lauper, Xavier Lefebvre, Daniel Mäusezahl, Catalina Ortiz, Ana Pereira, Michele Prevost, Hunter Quon, Siddhartha Roy, Ana R Silva, Émile Sylvestre, Lizhan Tang, Elliston Vallarino Reyes, Paul W J J van der Wielen, Michael Waak
{"title":"Foresight 2035: a perspective on the next decade of research on the management of Legionella spp. in engineered aquatic environments.","authors":"Frederik Hammes, Marco Gabrielli, Alessio Cavallaro, Antonia Eichelberg, Sofia Barigelli, Melina Bigler, Sebastien P Faucher, Hans P Füchslin, Valeria Gaia, Laura Gomez-Valero, Marianne Grimard-Conea, Charles N Haas, Kerry A Hamilton, Hannah G Healy, Yann Héchard, Tim Julian, Laurine Kieper, Ursula Lauper, Xavier Lefebvre, Daniel Mäusezahl, Catalina Ortiz, Ana Pereira, Michele Prevost, Hunter Quon, Siddhartha Roy, Ana R Silva, Émile Sylvestre, Lizhan Tang, Elliston Vallarino Reyes, Paul W J J van der Wielen, Michael Waak","doi":"10.1093/femsre/fuaf022","DOIUrl":"10.1093/femsre/fuaf022","url":null,"abstract":"<p><p>The disease burden from Legionella spp. infections has been increasing in many industrialized countries and, despite decades of scientific advances, ranks amongst the highest for waterborne diseases. We review here several key research areas from a multidisciplinary perspective and list critical research needs to address some of the challenges of Legionella spp. management in engineered environments. These include: (i) a consideration of Legionella species diversity and cooccurrence, beyond Legionella pneumophila only; (ii) an assessment of their environmental prevalence and clinical relevance, and how that may affect legislation, management, and intervention prioritization; (iii) a consideration of Legionella spp. sources, their definition and prioritization; (iv) the factors affecting Legionnaires' disease seasonality, how they link to sources, Legionella spp. proliferation and ecology, and how these may be affected by climate change; (v) the challenge of saving energy in buildings while controlling Legionella spp. with high water temperatures and chemical disinfection; and (vi) the ecological interactions of Legionella spp. with other microbes, and their potential as a biological control strategy. Ultimately, we call for increased interdisciplinary collaboration between multiple research domains, as well as transdisciplinary engagement and collaboration across government, industry, and science as the way toward controlling and reducing Legionella-derived infections.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":12.3,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12151150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144149997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mpox: current knowledge and understanding-a scoping review. Mpox:当前的知识和理解-范围审查。
IF 12.3 2区 生物学
FEMS microbiology reviews Pub Date : 2025-01-14 DOI: 10.1093/femsre/fuaf025
Helen Callaby, Amy Belfield, Ashley D Otter, Barry Atkinson, Michael Reynolds, Helen Roberts, N Claire Gordon
{"title":"Mpox: current knowledge and understanding-a scoping review.","authors":"Helen Callaby, Amy Belfield, Ashley D Otter, Barry Atkinson, Michael Reynolds, Helen Roberts, N Claire Gordon","doi":"10.1093/femsre/fuaf025","DOIUrl":"10.1093/femsre/fuaf025","url":null,"abstract":"<p><p>Mpox in humans is a rash illness resulting from infection with monkeypox virus (MPXV). In 2022, a public health emergency of international concern (PHEIC) was declared with 115 countries reporting cases of Mpox. Most of these countries had not previously reported cases. This global outbreak was sustained primarily by human-to-human transmission within complex sexual networks. Whilst these cases were similar to previous clade II West African MPXV isolates, they were sufficiently genomically distinct to result in WHO recognizing two subclades within clade II: clade IIa and clade IIb. In 2024, a second PHEIC was declared, resulting from a marked increase in cases of clade I MPXV. In this scoping review, we compare the major clinical, epidemiological, and genomic features of the major mpox lineages and the implications for vaccination, transmission, infection control and treatment..</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":12.3,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12198961/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144257688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial adaptive pathogenicity strategies to the host inflammatory environment. 微生物对宿主炎症环境的适应性致病策略。
IF 10.1 2区 生物学
FEMS microbiology reviews Pub Date : 2025-01-14 DOI: 10.1093/femsre/fuae032
Sophia U J Hitzler, Candela Fernández-Fernández, Dolly E Montaño, Axel Dietschmann, Mark S Gresnigt
{"title":"Microbial adaptive pathogenicity strategies to the host inflammatory environment.","authors":"Sophia U J Hitzler, Candela Fernández-Fernández, Dolly E Montaño, Axel Dietschmann, Mark S Gresnigt","doi":"10.1093/femsre/fuae032","DOIUrl":"10.1093/femsre/fuae032","url":null,"abstract":"<p><p>Pathogenic microorganisms can infect a variety of niches in the human body. During infection, these microbes can only persist if they adapt adequately to the dynamic host environment and the stresses imposed by the immune system. While viruses entirely rely on host cells to replicate, bacteria and fungi use their pathogenicity mechanisms for the acquisition of essential nutrients that lie under host restriction. An inappropriate deployment of pathogenicity mechanisms will alert host defence mechanisms that aim to eradicate the pathogen. Thus, these adaptations require tight regulation to guarantee nutritional access without eliciting strong immune activation. To work efficiently, the immune system relies on a complex signalling network, involving a myriad of immune mediators, some of which are quite directly associated with imminent danger for the pathogen. To manipulate the host immune system, viruses have evolved cytokine receptors and viral cytokines. However, among bacteria and fungi, selected pathogens have evolved the capacity to use these inflammatory response-specific signals to regulate their pathogenicity. In this review, we explore how bacterial and fungal pathogens can sense the immune system and use adaptive pathogenicity strategies to evade and escape host defence to ensure their persistence in the host.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737513/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142893312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extreme smells-microbial production of volatile organic compounds at the limits of life. 极端气味——微生物在生命极限下产生的挥发性有机化合物。
IF 10.1 2区 生物学
FEMS microbiology reviews Pub Date : 2025-01-14 DOI: 10.1093/femsre/fuaf004
Miguel Ángel Salinas-García, Jonas Fernbach, Riikka Rinnan, Anders Priemé
{"title":"Extreme smells-microbial production of volatile organic compounds at the limits of life.","authors":"Miguel Ángel Salinas-García, Jonas Fernbach, Riikka Rinnan, Anders Priemé","doi":"10.1093/femsre/fuaf004","DOIUrl":"10.1093/femsre/fuaf004","url":null,"abstract":"<p><p>Microbial volatile organic compounds (MVOCs) are diverse molecules produced by microorganisms, ranging from mere waste byproducts to important signalling molecules. While the interest in MVOCs has been increasing steadily, there is a significant gap in our knowledge of MVOCs in extreme environments with e.g. extreme temperatures or acidity. Microorganisms in these conditions are subjected to additional stress compared to their counterparts in moderate environments and in many cases have evolved unique adaptations, including the production of specialized MVOCs. This review highlights the diversity of MVOCs identified in extreme environments or produced by isolated extremophiles. Furthermore, we explore potential applications already investigated and discuss broader implications for biotechnology, environmental biology, and astrobiology.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837334/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143064751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Droplet microfluidics for single-cell studies: a frontier in ecological understanding of microbiomes. 用于单细胞研究的微滴微流体:微生物组生态学理解的前沿。
IF 12.3 2区 生物学
FEMS microbiology reviews Pub Date : 2025-01-14 DOI: 10.1093/femsre/fuaf032
Wannes Nauwynck, Karoline Faust, Nico Boon
{"title":"Droplet microfluidics for single-cell studies: a frontier in ecological understanding of microbiomes.","authors":"Wannes Nauwynck, Karoline Faust, Nico Boon","doi":"10.1093/femsre/fuaf032","DOIUrl":"10.1093/femsre/fuaf032","url":null,"abstract":"<p><p>Recent advances in single-cell technologies have profoundly impacted our understanding of microbial communities-shedding light on cell-to-cell variability in gene expression, regulatory dynamics, and metabolic potential. These approaches have shown that microbial populations are more heterogeneous and functionally complex than previously thought. However, direct probing of single-cell physiology-arguably more ecologically relevant by focusing on functional traits such as growth, metabolic activity, and enzymatic activity-remains underexplored. Droplet microfluidics provides a practical and high-throughput approach to address this gap, allowing functional characterization of individual microbial cells within complex communities and offering new opportunities to study ecological processes at high resolution. In this review, we look at the state of droplet microfluidics for single-cell microbial ecology. We revisit the fundamentals of microbial droplet workflows, we overview the current capabilities of droplet microfluidics that exist for microbial ecology and we look at the phenomena these workflows have uncovered and understanding they have generated. Finally, we integrate these capabilities to envision future droplet workflows that could enhance our understanding of single-cell physiology and discuss the fundamental limitations that go together with the droplet format.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":12.3,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342979/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144689629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The ecology, evolution, and physiology of Cardinium: a widespread heritable endosymbiont of invertebrates. 红雀的生态学、进化和生理学:一种广泛存在的可遗传的无脊椎动物内共生体。
IF 12.3 2区 生物学
FEMS microbiology reviews Pub Date : 2025-01-14 DOI: 10.1093/femsre/fuaf031
Olivia L Mathieson, Dylan L Schultz, Martha S Hunter, Manuel Kleiner, Stephan Schmitz-Esser, Matthew R Doremus
{"title":"The ecology, evolution, and physiology of Cardinium: a widespread heritable endosymbiont of invertebrates.","authors":"Olivia L Mathieson, Dylan L Schultz, Martha S Hunter, Manuel Kleiner, Stephan Schmitz-Esser, Matthew R Doremus","doi":"10.1093/femsre/fuaf031","DOIUrl":"10.1093/femsre/fuaf031","url":null,"abstract":"<p><p>Candidatus Cardinium hertigii (Cardinium) are maternally transmitted obligate intracellular bacteria found in a wide range of invertebrate hosts, including arthropods and nematodes. Infection with Cardinium has substantial consequences for host biology, with many strains manipulating host reproduction to favor symbiont transmission by (i) feminizing male hosts, (ii) altering host sex allocation, (iii) inducing parthenogenesis, or (iv) causing cytoplasmic incompatibility. Other Cardinium strains can confer benefits to their host or alter host behavior. Cardinium-modified host phenotypes can result in selective sweeps of cytological elements through host populations and potentially reinforce host speciation. Cardinium has potential for applications in controlling arthropod pest species and arthropod-vectored disease transmission, although much remains to be explored regarding Cardinium physiology and host interactions. In this review, we provide an overview of Cardinium evolution and host distribution. We describe the various host phenotypes associated with Cardinium and how biological and environmental factors influence these symbioses. We also provide an overview of Cardinium metabolism, physiology, and potential mechanisms for interactions with hosts based on recent studies using genomics and transcriptomics. Finally, we discuss new methodologies and directions for Cardinium research, including improving our understanding of Cardinium physiology, response to environmental stress, and potential for controlling arthropod pest populations.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":12.3,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144697989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the multilayered response of TB bacterium Mycobacterial tuberculosis to lysosomal injury. 探讨结核分枝杆菌对溶酶体损伤的多层反应。
IF 12.3 2区 生物学
FEMS microbiology reviews Pub Date : 2025-01-14 DOI: 10.1093/femsre/fuaf040
Mohd Shariq, Javaid Ahmad Sheikh, Asrar Ahmad Malik, Anwar Alam, Peter N Monk, Seyed E Hasnain, Nasreen Z Ehtesham
{"title":"Exploring the multilayered response of TB bacterium Mycobacterial tuberculosis to lysosomal injury.","authors":"Mohd Shariq, Javaid Ahmad Sheikh, Asrar Ahmad Malik, Anwar Alam, Peter N Monk, Seyed E Hasnain, Nasreen Z Ehtesham","doi":"10.1093/femsre/fuaf040","DOIUrl":"10.1093/femsre/fuaf040","url":null,"abstract":"<p><p>Mtb subverts host immune surveillance by damaging phagolysosomal membranes, exploiting them as replication niches. In response, host cells initiate a coordinated LDR, integrating membrane repair, selective autophagy, and de novo biogenesis. This review delineates a systems-level model of lysosomal quality control governed by three critical regulatory axes: LGALS3/8/9, TRIM E3 ubiquitin ligases, and the AMPK-TFEB signaling pathway. LGALSs detect exposed glycans on ruptured membranes, triggering ESCRT-mediated repair and recruiting ARs. TRIM proteins mediate context-specific ubiquitination, enhancing cargo selection and facilitating transcriptional reprogramming via TFEB. Simultaneously, AMPK-TFEB signaling links metabolic stress to lysosomal regeneration, reinforcing immune defense and cellular adaptation. We highlight emerging mechanisms, including ATG8ylation, CASM, Ca2 + leakage, and SG formation, that refine this multilayered response. Mtb virulence factors selectively disrupt these pathways, revealing their relevance to pathogen persistence. Beyond infection, this triadic network maintains lysosomal integrity in neurodegeneration, inflammation, and lysosomal storage disorders. Understanding its modular design reveals novel therapeutic targets and HDTs for combatting drug-resistant TB. This review integrates recent advances into a coherent framework that redefines lysosomal function as a dynamic, immune-regulatory hub essential for cellular resilience under infectious and metabolic stress.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":12.3,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144948039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信