{"title":"Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages.","authors":"Aakriti Gangwal, Nishant Kumar, Nitika Sangwan, Neha Dhasmana, Uma Dhawan, Andaleeb Sajid, Gunjan Arora, Yogendra Singh","doi":"10.1093/femsre/fuad044","DOIUrl":"10.1093/femsre/fuad044","url":null,"abstract":"<p><p>Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":10.1,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465088/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10227727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Drivers and consequences of bacteriophage host range.","authors":"D Holtappels, Poliane Alfenas-Zerbini, B Koskella","doi":"10.1093/femsre/fuad038","DOIUrl":"https://doi.org/10.1093/femsre/fuad038","url":null,"abstract":"<p><p>Bacteriophages are obligate parasites of bacteria characterized by the breadth of hosts that they can infect. This \"host range\" depends on the genotypes and morphologies of the phage and the bacterial host, but also on the environment in which they are interacting. Understanding phage host range is critical to predicting the impacts of these parasites in their natural host communities and their utility as therapeutic agents, but is also key to predicting how phages evolve and in doing so drive evolutionary change in their host populations, including through movement of genes among unrelated bacterial genomes. Here, we explore the drivers of phage infection and host range from the molecular underpinnings of the phage-host interaction to the ecological context in which they occur. We further evaluate the importance of intrinsic, transient, and environmental drivers shaping phage infection and replication, and discuss how each influences host range over evolutionary time. The host range of phages has great consequences in phage-based application strategies, as well as natural community dynamics, and we therefore highlight both recent developments and key open questions in the field as phage-based therapeutics come back into focus.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10232439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katherine Lavelle, Brian McDonnell, Gerald Fitzgerald, Douwe van Sinderen, Jennifer Mahony
{"title":"Bacteriophage-host interactions in Streptococcus thermophilus and their impact on co-evolutionary processes.","authors":"Katherine Lavelle, Brian McDonnell, Gerald Fitzgerald, Douwe van Sinderen, Jennifer Mahony","doi":"10.1093/femsre/fuad032","DOIUrl":"https://doi.org/10.1093/femsre/fuad032","url":null,"abstract":"<p><p>Bacteriophages (or phages) represent a persistent threat to the success and reliability of food fermentation processes. Recent reports of phages that infect Streptococcus thermophilus have highlighted the diversification of phages of this species. Phages of S. thermophilus typically exhibit a narrow range, a feature that is suggestive of diverse receptor moieties being presented on the cell surface of the host. Cell wall polysaccharides, including rhamnose-glucose polysaccharides and exopolysaccharides have been implicated as being involved in the initial interactions with several phages of this species. Following internalization of the phage genome, the host presents several defences, including CRISPR-Cas and restriction and modification systems to limit phage proliferation. This review provides a current and holistic view of the interactions of phages and their S. thermophilus host cells and how this has influenced the diversity and evolution of both entities.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320759/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9854827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cécile Philippe, Jeffrey K Cornuault, Alessandra G de Melo, Rachel Morin-Pelchat, Alice P Jolicoeur, Sylvain Moineau
{"title":"The never-ending battle between lactic acid bacteria and their phages.","authors":"Cécile Philippe, Jeffrey K Cornuault, Alessandra G de Melo, Rachel Morin-Pelchat, Alice P Jolicoeur, Sylvain Moineau","doi":"10.1093/femsre/fuad035","DOIUrl":"https://doi.org/10.1093/femsre/fuad035","url":null,"abstract":"<p><p>Over the past few decades, the interest in lactic acid bacteria (LAB) has been steadily growing. This is mainly due to their industrial use, their health benefits as probiotic bacteria and their ecological importance in host-related microbiota. Phage infection represents a significant risk for the production and industrial use of LAB. This created the need to study the various means of defense put in place by LAB to resist their viral enemies, as well as the countermeasures evolved by phages to overcome these defenses. In this review, we discuss defense systems that LAB employ to resist phage infections. We also describe how phages counter these mechanisms through diverse and sophisticated strategies. Furthermore, we discuss the way phage-host interactions shape each other's evolution. The recent discovery of numerous novel defense systems in other bacteria promises a new dawn for phage research in LAB.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9855521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caroline Borreby, Eva Maria Sternkopf Lillebæk, Birgitte H Kallipolitis
{"title":"Anti-infective activities of long-chain fatty acids against foodborne pathogens.","authors":"Caroline Borreby, Eva Maria Sternkopf Lillebæk, Birgitte H Kallipolitis","doi":"10.1093/femsre/fuad037","DOIUrl":"https://doi.org/10.1093/femsre/fuad037","url":null,"abstract":"<p><p>Free fatty acids (FFAs) have long been acknowledged for their antimicrobial activity. More recently, long-chain FFAs (>12 carbon atoms) are receiving increased attention for their potent antivirulence activity against pathogenic bacteria. In the gastrointestinal tract, foodborne pathogens encounter a variety of long-chain FFAs derived from the diet, metabolic activities of the gut microbiota, or the host. This review highlights the role of long-chain FFAs as signaling molecules acting to inhibit the infectious potential of important foodborne pathogens, including Salmonella and Listeria monocytogenes. Various long-chain FFAs interact with sensory proteins and transcriptional regulators controlling the expression of infection-relevant genes. Consequently, long-chain FFAs may act to disarm bacterial pathogens of their virulence factors. Understanding how foodborne pathogens sense and respond to long-chain FFAs may enable the design of new anti-infective approaches.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368373/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9871257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hao Su, Henley Cheung, Harry Cheuk-Hay Lau, Hongyan Chen, Xiaoting Zhang, Na Qin, Yifei Wang, Matthew Tak Vai Chan, William Ka Kei Wu, Huarong Chen
{"title":"Crosstalk between gut microbiota and RNA N6-methyladenosine modification in cancer.","authors":"Hao Su, Henley Cheung, Harry Cheuk-Hay Lau, Hongyan Chen, Xiaoting Zhang, Na Qin, Yifei Wang, Matthew Tak Vai Chan, William Ka Kei Wu, Huarong Chen","doi":"10.1093/femsre/fuad036","DOIUrl":"https://doi.org/10.1093/femsre/fuad036","url":null,"abstract":"<p><p>The gut microbiota plays a crucial role in regulating various host metabolic, immune, and neuroendocrine functions, and has a significant impact on human health. Several lines of evidence suggest that gut dysbiosis is associated with a variety of diseases, including cancer. The gut microbiota can impact the development and progression of cancer through a range of mechanisms, such as regulating cell proliferation and death, modulating the host immune response, and altering the host metabolic state. Gene regulatory programs are considered critical mediators between the gut microbiota and host phenotype, of which RNA N6-methyladenosine (m6A) modifications have attracted much attention recently. Aberrant m6A modifications have been shown to play a crucial role in cancer development. This review aims to provide an overview of the diverse roles of gut microbiota and RNA m6A modifications in cancer and highlight their potential interactions in cancer development.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9864492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Celia Mayer, Anabela Borges, Saskia-Camille Flament-Simon, Manuel Simões
{"title":"Quorum sensing architecture network in Escherichia coli virulence and pathogenesis.","authors":"Celia Mayer, Anabela Borges, Saskia-Camille Flament-Simon, Manuel Simões","doi":"10.1093/femsre/fuad031","DOIUrl":"https://doi.org/10.1093/femsre/fuad031","url":null,"abstract":"<p><p>Escherichia coli is a Gram-negative commensal bacterium of the normal microbiota of humans and animals. However, several E. coli strains are opportunistic pathogens responsible for severe bacterial infections, including gastrointestinal and urinary tract infections. Due to the emergence of multidrug-resistant serotypes that can cause a wide spectrum of diseases, E. coli is considered one of the most troublesome human pathogens worldwide. Therefore, a more thorough understanding of its virulence control mechanisms is essential for the development of new anti-pathogenic strategies. Numerous bacteria rely on a cell density-dependent communication system known as quorum sensing (QS) to regulate several bacterial functions, including the expression of virulence factors. The QS systems described for E. coli include the orphan SdiA regulator, an autoinducer-2 (AI-2), an autoinducer-3 (AI-3) system, and indole, which allow E. coli to establish different communication processes to sense and respond to the surrounding environment. This review aims to summarise the current knowledge of the global QS network in E. coli and its influence on virulence and pathogenesis. This understanding will help to improve anti-virulence strategies with the E. coli QS network in focus.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9800219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: four billion years of microbial terpenome evolution.","authors":"","doi":"10.1093/femsre/fuad027","DOIUrl":"https://doi.org/10.1093/femsre/fuad027","url":null,"abstract":"","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9822048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Signe T Karlsen, Martin H Rau, Benjamín J Sánchez, Kristian Jensen, Ahmad A Zeidan
{"title":"From genotype to phenotype: computational approaches for inferring microbial traits relevant to the food industry.","authors":"Signe T Karlsen, Martin H Rau, Benjamín J Sánchez, Kristian Jensen, Ahmad A Zeidan","doi":"10.1093/femsre/fuad030","DOIUrl":"10.1093/femsre/fuad030","url":null,"abstract":"<p><p>When selecting microbial strains for the production of fermented foods, various microbial phenotypes need to be taken into account to achieve target product characteristics, such as biosafety, flavor, texture, and health-promoting effects. Through continuous advances in sequencing technologies, microbial whole-genome sequences of increasing quality can now be obtained both cheaper and faster, which increases the relevance of genome-based characterization of microbial phenotypes. Prediction of microbial phenotypes from genome sequences makes it possible to quickly screen large strain collections in silico to identify candidates with desirable traits. Several microbial phenotypes relevant to the production of fermented foods can be predicted using knowledge-based approaches, leveraging our existing understanding of the genetic and molecular mechanisms underlying those phenotypes. In the absence of this knowledge, data-driven approaches can be applied to estimate genotype-phenotype relationships based on large experimental datasets. Here, we review computational methods that implement knowledge- and data-driven approaches for phenotype prediction, as well as methods that combine elements from both approaches. Furthermore, we provide examples of how these methods have been applied in industrial biotechnology, with special focus on the fermented food industry.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 4","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/69/bd/fuad030.PMC10337747.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9799218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}