{"title":"Microbiota and fungal-bacterial interactions in the cystic fibrosis lung.","authors":"Eneko Santos-Fernandez, Leire Martin-Souto, Aitziber Antoran, Maialen Areitio, Leire Aparicio-Fernandez, Jean-Philippe Bouchara, Carsten Schwarz, Aitor Rementeria, Idoia Buldain, Andoni Ramirez-Garcia","doi":"10.1093/femsre/fuad029","DOIUrl":"https://doi.org/10.1093/femsre/fuad029","url":null,"abstract":"<p><p>The most common genetic hereditary disease affecting Caucasians is cystic fibrosis (CF), which is caused by autosomal recessive mutations in the CFTR gene. The most serious consequence is the production of a thick and sticky mucus in the respiratory tract, which entraps airborne microorganisms and facilitates colonization, inflammation and infection. Therefore, the present article compiles the information about the microbiota and, particularly, the inter-kingdom fungal-bacterial interactions in the CF lung, the molecules involved and the potential effects that these interactions may have on the course of the disease. Among the bacterial compounds, quorum sensing-regulated molecules such as homoserine lactones, phenazines, rhamnolipids, quinolones and siderophores (pyoverdine and pyochelin) stand out, but volatile organic compounds, maltophilin and CF-related bacteriophages are also explained. These molecules exhibit diverse antifungal mechanisms, including iron starvation and induction of reactive oxygen and nitrogen species production. The fungal compounds are less studied, but they include cell wall components, siderophores, patulin and farnesol. Despite the apparent competition between microorganisms, the persistence of significant rates of bacterial-fungal co-colonization in CF suggests that numerous variables influence it. In conclusion, it is crucial to increase scientific and economic efforts to intensify studies on the bacterial-fungal inter-kingdom interactions in the CF lung.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 3","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9743562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bacterial extracellular electron transfer in plant and animal ecosystems.","authors":"Eric Stevens, Maria L Marco","doi":"10.1093/femsre/fuad019","DOIUrl":"https://doi.org/10.1093/femsre/fuad019","url":null,"abstract":"<p><p>Extracellular electron transfer (EET) is a bioelectrochemical process performed by electrochemically active bacteria (EAB) found in host-associated environments, including plant and animal ecosystems and fermenting plant- and animal-derived foods. Through direct or mediated electron transfer pathways, certain bacteria use EET to enhance ecological fitness with host-impacting effects. In the plant rhizosphere, electron acceptors support the growth of EAB such as Geobacter, cable bacteria, and some clostridia that can result changing iron and heavy metal uptake by plants. In animal microbiomes, EET is associated with diet-derived iron in the intestines of soil-dwelling termites, earthworms, and beetle larvae. EET is also associated with the colonization and metabolism of some bacteria in human and animal microbiomes, such as Streptococcus mutans in the mouth, Enterococcus faecalis and Listeria monocytogenes in the intestine, and Pseudomonas aeruginosa in the lungs. During the fermentation of plant tissues and bovine milk, lactic acid bacteria like Lactiplantibacillus plantarum and Lactococcus lactis may use EET to increase their growth and food acidification, as well as decrease environmental oxidation-reduction potential. Thus, EET is likely an important metabolic pathway for host-associated bacteria and has implications for ecosystem function, health and disease, and biotechnological applications.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 3","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9741748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Targeting the nucleotide metabolism of Trypanosoma brucei and other trypanosomatids.","authors":"Anders Hofer","doi":"10.1093/femsre/fuad020","DOIUrl":"https://doi.org/10.1093/femsre/fuad020","url":null,"abstract":"<p><p>African sleeping sickness, Chagas disease, and leishmaniasis are life-threatening diseases that together affect millions of people around the world and are caused by different members of the protozoan family Trypanosomatidae. The most studied member of the family is Trypanosoma brucei, which is spread by tsetse flies and causes African sleeping sickness. Nucleotide metabolism in T. brucei and other trypanosomatids is significantly different from that of mammals and was recognized as a target for chemotherapy already in the 1970-1980s. A more thorough investigation of the nucleotide metabolism in recent years has paved the way for identifying nucleoside analogues that can cure T. brucei brain infections in animal models. Specific features of T. brucei nucleotide metabolism include the lack of de novo purine biosynthesis, the presence of very efficient purine transporters, the lack of salvage pathways for CTP synthesis, unique enzyme localizations, and a recently discovered novel pathway for dTTP synthesis. This review describes the nucleotide metabolism of T. brucei, highlights differences and similarities to other trypanosomatids, and discusses how to exploit the parasite-specific features for drug development.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 3","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10208901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10101622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mark S Turner, Yuwei Xiang, Zhao-Xun Liang, Esteban Marcellin, Huong Thi Pham
{"title":"Cyclic-di-AMP signalling in lactic acid bacteria.","authors":"Mark S Turner, Yuwei Xiang, Zhao-Xun Liang, Esteban Marcellin, Huong Thi Pham","doi":"10.1093/femsre/fuad025","DOIUrl":"https://doi.org/10.1093/femsre/fuad025","url":null,"abstract":"<p><p>Cyclic dimeric adenosine monophosphate (cyclic-di-AMP) is a nucleotide second messenger present in Gram-positive bacteria, Gram-negative bacteria and some Archaea. The intracellular concentration of cyclic-di-AMP is adjusted in response to environmental and cellular cues, primarily through the activities of synthesis and degradation enzymes. It performs its role by binding to protein and riboswitch receptors, many of which contribute to osmoregulation. Imbalances in cyclic-di-AMP can lead to pleiotropic phenotypes, affecting aspects such as growth, biofilm formation, virulence, and resistance to osmotic, acid, and antibiotic stressors. This review focuses on cyclic-di-AMP signalling in lactic acid bacteria (LAB) incorporating recent experimental discoveries and presenting a genomic analysis of signalling components from a variety of LAB, including those found in food, and commensal, probiotic, and pathogenic species. All LAB possess enzymes for the synthesis and degradation of cyclic-di-AMP, but are highly variable with regards to the receptors they possess. Studies in Lactococcus and Streptococcus have revealed a conserved function for cyclic-di-AMP in inhibiting the transport of potassium and glycine betaine, either through direct binding to transporters or to a transcriptional regulator. Structural analysis of several cyclic-di-AMP receptors from LAB has also provided insights into how this nucleotide exerts its influence.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 3","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243994/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9733792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A guide to current methodology and usage of reverse vaccinology towards in silico vaccine discovery.","authors":"Stephen J Goodswen, Paul J Kennedy, John T Ellis","doi":"10.1093/femsre/fuad004","DOIUrl":"https://doi.org/10.1093/femsre/fuad004","url":null,"abstract":"<p><p>Reverse vaccinology (RV) was described at its inception in 2000 as an in silico process that starts from the genomic sequence of the pathogen and ends with a list of potential protein and/or peptide candidates to be experimentally validated for vaccine development. Twenty-two years later, this process has evolved from a few steps entailing a handful of bioinformatics tools to a multitude of steps with a plethora of tools. Other in silico related processes with overlapping workflow steps have also emerged with terms such as subtractive proteomics, computational vaccinology, and immunoinformatics. From the perspective of a new RV practitioner, determining the appropriate workflow steps and bioinformatics tools can be a time consuming and overwhelming task, given the number of choices. This review presents the current understanding of RV and its usage in the research community as determined by a comprehensive survey of scientific papers published in the last seven years. We believe the current mainstream workflow steps and tools presented here will be a valuable guideline for all researchers wanting to apply an up-to-date in silico vaccine discovery process.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 2","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9121096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Washington Logroño, Sabine Kleinsteuber, Jörg Kretzschmar, Falk Harnisch, Jo De Vrieze, Marcell Nikolausz
{"title":"The microbiology of Power-to-X applications.","authors":"Washington Logroño, Sabine Kleinsteuber, Jörg Kretzschmar, Falk Harnisch, Jo De Vrieze, Marcell Nikolausz","doi":"10.1093/femsre/fuad013","DOIUrl":"https://doi.org/10.1093/femsre/fuad013","url":null,"abstract":"<p><p>Power-to-X (P2X) technologies will play a more important role in the conversion of electric power to storable energy carriers, commodity chemicals and even food and feed. Among the different P2X technologies, microbial components form cornerstones of individual process steps. This review comprehensively presents the state-of-the-art of different P2X technologies from a microbiological standpoint. We are focusing on microbial conversions of hydrogen from water electrolysis to methane, other chemicals and proteins. We present the microbial toolbox needed to gain access to these products of interest, assess its current status and research needs, and discuss potential future developments that are needed to turn todays P2X concepts into tomorrow's technologies.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 2","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9259336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pim T van Leeuwen, Stanley Brul, Jianbo Zhang, Meike T Wortel
{"title":"Synthetic microbial communities (SynComs) of the human gut: design, assembly, and applications.","authors":"Pim T van Leeuwen, Stanley Brul, Jianbo Zhang, Meike T Wortel","doi":"10.1093/femsre/fuad012","DOIUrl":"10.1093/femsre/fuad012","url":null,"abstract":"<p><p>The human gut harbors native microbial communities, forming a highly complex ecosystem. Synthetic microbial communities (SynComs) of the human gut are an assembly of microorganisms isolated from human mucosa or fecal samples. In recent decades, the ever-expanding culturing capacity and affordable sequencing, together with advanced computational modeling, started a ''golden age'' for harnessing the beneficial potential of SynComs to fight gastrointestinal disorders, such as infections and chronic inflammatory bowel diseases. As simplified and completely defined microbiota, SynComs offer a promising reductionist approach to understanding the multispecies and multikingdom interactions in the microbe-host-immune axis. However, there are still many challenges to overcome before we can precisely construct SynComs of designed function and efficacy that allow the translation of scientific findings to patients' treatments. Here, we discussed the strategies used to design, assemble, and test a SynCom, and address the significant challenges, which are of microbiological, engineering, and translational nature, that stand in the way of using SynComs as live bacterial therapeutics.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 2","pages":""},"PeriodicalIF":10.1,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f4/6a/fuad012.PMC10062696.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9259978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emmanuelle H Crost, Erika Coletto, Andrew Bell, Nathalie Juge
{"title":"Ruminococcus gnavus: friend or foe for human health.","authors":"Emmanuelle H Crost, Erika Coletto, Andrew Bell, Nathalie Juge","doi":"10.1093/femsre/fuad014","DOIUrl":"10.1093/femsre/fuad014","url":null,"abstract":"<p><p>Ruminococcus gnavus was first identified in 1974 as a strict anaerobe in the gut of healthy individuals, and for several decades, its study has been limited to specific enzymes or bacteriocins. With the advent of metagenomics, R. gnavus has been associated both positively and negatively with an increasing number of intestinal and extraintestinal diseases from inflammatory bowel diseases to neurological disorders. This prompted renewed interest in understanding the adaptation mechanisms of R. gnavus to the gut, and the molecular mediators affecting its association with health and disease. From ca. 250 publications citing R. gnavus since 1990, 94% were published in the last 10 years. In this review, we describe the biological characterization of R. gnavus, its occurrence in the infant and adult gut microbiota and the factors influencing its colonization of the gastrointestinal tract; we also discuss the current state of our knowledge on its role in host health and disease. We highlight gaps in knowledge and discuss the hypothesis that differential health outcomes associated with R. gnavus in the gut are strain and niche specific.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 2","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10112845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9330615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Masanori Asai, Yanwen Li, Sandra M Newton, Brian D Robertson, Paul R Langford
{"title":"Galleria mellonella-intracellular bacteria pathogen infection models: the ins and outs.","authors":"Masanori Asai, Yanwen Li, Sandra M Newton, Brian D Robertson, Paul R Langford","doi":"10.1093/femsre/fuad011","DOIUrl":"10.1093/femsre/fuad011","url":null,"abstract":"<p><p>Galleria mellonella (greater wax moth) larvae are used widely as surrogate infectious disease models, due to ease of use and the presence of an innate immune system functionally similar to that of vertebrates. Here, we review G. mellonella-human intracellular bacteria pathogen infection models from the genera Burkholderia, Coxiella, Francisella, Listeria, and Mycobacterium. For all genera, G. mellonella use has increased understanding of host-bacterial interactive biology, particularly through studies comparing the virulence of closely related species and/or wild-type versus mutant pairs. In many cases, virulence in G. mellonella mirrors that found in mammalian infection models, although it is unclear whether the pathogenic mechanisms are the same. The use of G. mellonella larvae has speeded up in vivo efficacy and toxicity testing of novel antimicrobials to treat infections caused by intracellular bacteria: an area that will expand since the FDA no longer requires animal testing for licensure. Further use of G. mellonella-intracellular bacteria infection models will be driven by advances in G. mellonella genetics, imaging, metabolomics, proteomics, and transcriptomic methodologies, alongside the development and accessibility of reagents to quantify immune markers, all of which will be underpinned by a fully annotated genome.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 2","pages":""},"PeriodicalIF":10.1,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10045907/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9561851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amaranta Kahn, Paulo Oliveira, Marine Cuau, Pedro N Leão
{"title":"Incorporation, fate, and turnover of free fatty acids in cyanobacteria.","authors":"Amaranta Kahn, Paulo Oliveira, Marine Cuau, Pedro N Leão","doi":"10.1093/femsre/fuad015","DOIUrl":"https://doi.org/10.1093/femsre/fuad015","url":null,"abstract":"<p><p>Fatty acids are important molecules in bioenergetics and also in industry. The phylum cyanobacteria consists of a group of prokaryotes that typically carry out oxygenic photosynthesis with water as an electron donor and use carbon dioxide as a carbon source to generate a range of biomolecules, including fatty acids. They are also able to import exogenous free fatty acids and direct them to biosynthetic pathways. Here, we review current knowledge on mechanisms and regulation of free fatty acid transport into cyanobacterial cells, their subsequent activation and use in the synthesis of fatty acid-containing biomolecules such as glycolipids and alka(e)nes, as well as recycling of free fatty acids derived from such molecules. This review also covers efforts in the engineering of such cyanobacterial fatty acid-associated pathways en route to optimized biofuel production.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"47 2","pages":""},"PeriodicalIF":11.3,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ec/8c/fuad015.PMC10114076.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9700908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}