Mohd Shariq, Javaid Ahmad Sheikh, Asrar Ahmad Malik, Anwar Alam, Peter N Monk, Seyed E Hasnain, Nasreen Z Ehtesham
{"title":"Exploring the multilayered response of TB bacterium Mycobacterial tuberculosis to lysosomal injury.","authors":"Mohd Shariq, Javaid Ahmad Sheikh, Asrar Ahmad Malik, Anwar Alam, Peter N Monk, Seyed E Hasnain, Nasreen Z Ehtesham","doi":"10.1093/femsre/fuaf040","DOIUrl":null,"url":null,"abstract":"<p><p>Mtb subverts host immune surveillance by damaging phagolysosomal membranes, exploiting them as replication niches. In response, host cells initiate a coordinated LDR, integrating membrane repair, selective autophagy, and de novo biogenesis. This review delineates a systems-level model of lysosomal quality control governed by three critical regulatory axes: LGALS3/8/9, TRIM E3 ubiquitin ligases, and the AMPK-TFEB signaling pathway. LGALSs detect exposed glycans on ruptured membranes, triggering ESCRT-mediated repair and recruiting ARs. TRIM proteins mediate context-specific ubiquitination, enhancing cargo selection and facilitating transcriptional reprogramming via TFEB. Simultaneously, AMPK-TFEB signaling links metabolic stress to lysosomal regeneration, reinforcing immune defense and cellular adaptation. We highlight emerging mechanisms, including ATG8ylation, CASM, Ca2 + leakage, and SG formation, that refine this multilayered response. Mtb virulence factors selectively disrupt these pathways, revealing their relevance to pathogen persistence. Beyond infection, this triadic network maintains lysosomal integrity in neurodegeneration, inflammation, and lysosomal storage disorders. Understanding its modular design reveals novel therapeutic targets and HDTs for combatting drug-resistant TB. This review integrates recent advances into a coherent framework that redefines lysosomal function as a dynamic, immune-regulatory hub essential for cellular resilience under infectious and metabolic stress.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsre/fuaf040","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mtb subverts host immune surveillance by damaging phagolysosomal membranes, exploiting them as replication niches. In response, host cells initiate a coordinated LDR, integrating membrane repair, selective autophagy, and de novo biogenesis. This review delineates a systems-level model of lysosomal quality control governed by three critical regulatory axes: LGALS3/8/9, TRIM E3 ubiquitin ligases, and the AMPK-TFEB signaling pathway. LGALSs detect exposed glycans on ruptured membranes, triggering ESCRT-mediated repair and recruiting ARs. TRIM proteins mediate context-specific ubiquitination, enhancing cargo selection and facilitating transcriptional reprogramming via TFEB. Simultaneously, AMPK-TFEB signaling links metabolic stress to lysosomal regeneration, reinforcing immune defense and cellular adaptation. We highlight emerging mechanisms, including ATG8ylation, CASM, Ca2 + leakage, and SG formation, that refine this multilayered response. Mtb virulence factors selectively disrupt these pathways, revealing their relevance to pathogen persistence. Beyond infection, this triadic network maintains lysosomal integrity in neurodegeneration, inflammation, and lysosomal storage disorders. Understanding its modular design reveals novel therapeutic targets and HDTs for combatting drug-resistant TB. This review integrates recent advances into a coherent framework that redefines lysosomal function as a dynamic, immune-regulatory hub essential for cellular resilience under infectious and metabolic stress.
期刊介绍:
Title: FEMS Microbiology Reviews
Journal Focus:
Publishes reviews covering all aspects of microbiology not recently surveyed
Reviews topics of current interest
Provides comprehensive, critical, and authoritative coverage
Offers new perspectives and critical, detailed discussions of significant trends
May contain speculative and selective elements
Aimed at both specialists and general readers
Reviews should be framed within the context of general microbiology and biology
Submission Criteria:
Manuscripts should not be unevaluated compilations of literature
Lectures delivered at symposia must review the related field to be acceptable