FEMS microbiology reviews最新文献

筛选
英文 中文
Root colonization by beneficial rhizobacteria 有益根瘤菌在根部定殖
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2023-12-14 DOI: 10.1093/femsre/fuad066
Yunpeng Liu, Zhihui Xu, Lin Chen, Weibing Xun, Xia Shu, Yu Chen, Xinli Sun, Zhengqi Wang, Yi Ren, Qirong Shen, Ruifu Zhang
{"title":"Root colonization by beneficial rhizobacteria","authors":"Yunpeng Liu, Zhihui Xu, Lin Chen, Weibing Xun, Xia Shu, Yu Chen, Xinli Sun, Zhengqi Wang, Yi Ren, Qirong Shen, Ruifu Zhang","doi":"10.1093/femsre/fuad066","DOIUrl":"https://doi.org/10.1093/femsre/fuad066","url":null,"abstract":"Rhizosphere microbes play critical roles for plant's growth and health. Among them, the beneficial rhizobacteria have the potential to be developed as the biofertilizer or bioinoculants for sustaining the agricultural development. The efficient rhizosphere colonization of these rhizobacteria is a prerequisite for exerting their plant beneficial functions, but the colonizing process and underlying mechanisms have not been thoroughly reviewed, especially for the non-symbiotic beneficial rhizobacteria. This review systematically analyzed the root colonizing process of the non-symbiotic rhizobacteria and compared it with that of the symbiotic and pathogenic bacteria. This review also highlighted the approaches to improve the root colonization efficiency and proposed to study the rhizobacterial colonization from a holistic perspective of the rhizosphere microbiome under more natural conditions.","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138685184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Illuminating the oral microbiome and its host interactions: tools and approaches for molecular microbiology studies. 阐明口腔微生物组及其与宿主的相互作用:分子微生物学研究的工具和方法。
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2023-11-01 DOI: 10.1093/femsre/fuac050
Justin Merritt, Jens Kreth
{"title":"Illuminating the oral microbiome and its host interactions: tools and approaches for molecular microbiology studies.","authors":"Justin Merritt, Jens Kreth","doi":"10.1093/femsre/fuac050","DOIUrl":"10.1093/femsre/fuac050","url":null,"abstract":"<p><p>Advancements in DNA sequencing technologies within the last decade have stimulated an unprecedented interest in the human microbiome, largely due the broad diversity of human diseases found to correlate with microbiome dysbiosis. As a direct consequence of these studies, a vast number of understudied and uncharacterized microbes have been identified as potential drivers of mucosal health and disease. The looming challenge in the field is to transition these observations into defined molecular mechanistic studies of symbiosis and dysbiosis. In order to meet this challenge, many of these newly identified microbes will need to be adapted for use in experimental models. Consequently, this review presents a comprehensive overview of the molecular microbiology tools and techniques that have played crucial roles in genetic studies of the bacteria found within the human oral microbiota. Here, we will use specific examples from the oral microbiome literature to illustrate the biology supporting these techniques, why they are needed in the field, and how such technologies have been implemented. It is hoped that this information can serve as a useful reference guide to help catalyze molecular microbiology studies of the many new understudied and uncharacterized species identified at different mucosal sites in the body.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10719069/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9346271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation. 铜绿假单胞菌生物膜胞外多糖:组装、功能和降解。
IF 10.1 2区 生物学
FEMS microbiology reviews Pub Date : 2023-11-01 DOI: 10.1093/femsre/fuad060
Andreea A Gheorghita, Daniel J Wozniak, Matthew R Parsek, P Lynne Howell
{"title":"Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation.","authors":"Andreea A Gheorghita, Daniel J Wozniak, Matthew R Parsek, P Lynne Howell","doi":"10.1093/femsre/fuad060","DOIUrl":"10.1093/femsre/fuad060","url":null,"abstract":"<p><p>The biofilm matrix is a fortress; sheltering bacteria in a protective and nourishing barrier that allows for growth and adaptation to various surroundings. A variety of different components are found within the matrix including water, lipids, proteins, extracellular DNA, RNA, membrane vesicles, phages, and exopolysaccharides. As part of its biofilm matrix, Pseudomonas aeruginosa is genetically capable of producing three chemically distinct exopolysaccharides - alginate, Pel, and Psl - each of which has a distinct role in biofilm formation and immune evasion during infection. The polymers are produced by highly conserved mechanisms of secretion, involving many proteins that span both the inner and outer bacterial membranes. Experimentally determined structures, predictive modelling of proteins whose structures are yet to be solved, and structural homology comparisons give us insight into the molecular mechanisms of these secretion systems, from polymer synthesis to modification and export. Here, we review recent advances that enhance our understanding of P. aeruginosa multiprotein exopolysaccharide biosynthetic complexes, and how the glycoside hydrolases/lyases within these systems have been commandeered for antimicrobial applications.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":null,"pages":null},"PeriodicalIF":10.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54228413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of Alternaria pathogenesis in animals and plants. 链格孢病在动物和植物中的发病机制。
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2023-11-01 DOI: 10.1093/femsre/fuad061
Chantal Fernandes, Arturo Casadevall, Teresa Gonçalves
{"title":"Mechanisms of Alternaria pathogenesis in animals and plants.","authors":"Chantal Fernandes, Arturo Casadevall, Teresa Gonçalves","doi":"10.1093/femsre/fuad061","DOIUrl":"10.1093/femsre/fuad061","url":null,"abstract":"<p><p>Alternaria species are cosmopolitan fungi darkly pigmented by melanin that infect numerous plant species causing economically important agricultural spoilage of various food crops. Alternaria spp. also infect animals, being described as entomopathogenic fungi but also infecting warm-blooded animals, including humans. Their clinical importance in human health, as infection agents, lay in the growing number of immunocompromised patients. Moreover, Alternaria spp. are considered some of the most abundant and potent sources of airborne sensitizer allergens causing allergic respiratory diseases, as severe asthma. Among the numerous strategies deployed by Alternaria spp. to attack their hosts, the production of toxins, carrying critical concerns to public health as food contaminant, and the production of hydrolytic enzymes such as proteases, can be highlighted. Alternaria proteases also trigger allergic symptoms in individuals with fungal sensitization, acting as allergens and facilitating antigen access to the host subepithelium. Here, we review the current knowledge about the mechanisms of Alternaria pathogenesis in plants and animals, the strategies used by Alternaria to cope with the host defenses, and the involvement Alternaria allergens and mechanisms of sensitization.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54228412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular strategies for the utilisation of human milk oligosaccharides by infant gut-associated bacteria. 婴儿肠道相关细菌利用母乳低聚糖的分子策略。
IF 10.1 2区 生物学
FEMS microbiology reviews Pub Date : 2023-11-01 DOI: 10.1093/femsre/fuad056
Leonie Jane Kiely, Kizkitza Busca, Jonathan A Lane, Douwe van Sinderen, Rita M Hickey
{"title":"Molecular strategies for the utilisation of human milk oligosaccharides by infant gut-associated bacteria.","authors":"Leonie Jane Kiely, Kizkitza Busca, Jonathan A Lane, Douwe van Sinderen, Rita M Hickey","doi":"10.1093/femsre/fuad056","DOIUrl":"10.1093/femsre/fuad056","url":null,"abstract":"<p><p>A number of bacterial species are found in high abundance in the faeces of healthy breast-fed infants, an occurrence that is understood to be, at least in part, due to the ability of these bacteria to metabolize human milk oligosaccharides (HMOs). HMOs are the third most abundant component of human milk after lactose and lipids, and represent complex sugars which possess unique structural diversity and are resistant to infant gastrointestinal digestion. Thus, these sugars reach the infant distal intestine intact, thereby serving as a fermentable substrate for specific intestinal microbes, including Firmicutes, Proteobacteria, and especially infant-associated Bifidobacterium spp. which help to shape the infant gut microbiome. Bacteria utilising HMOs are equipped with genes associated with their degradation and a number of carbohydrate-active enzymes known as glycoside hydrolase enzymes have been identified in the infant gut, which supports this hypothesis. The resulting degraded HMOs can also be used as growth substrates for other infant gut bacteria present in a microbe-microbe interaction known as 'cross-feeding'. This review describes the current knowledge on HMO metabolism by particular infant gut-associated bacteria, many of which are currently used as commercial probiotics, including the distinct strategies employed by individual species for HMO utilisation.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":null,"pages":null},"PeriodicalIF":10.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629584/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41146763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small proteins in Gram-positive bacteria. 革兰氏阳性细菌中的小蛋白质。
IF 10.1 2区 生物学
FEMS microbiology reviews Pub Date : 2023-11-01 DOI: 10.1093/femsre/fuad064
Sabine Brantl, Inam Ul Haq
{"title":"Small proteins in Gram-positive bacteria.","authors":"Sabine Brantl, Inam Ul Haq","doi":"10.1093/femsre/fuad064","DOIUrl":"10.1093/femsre/fuad064","url":null,"abstract":"<p><p>Small proteins comprising less than 100 amino acids have been often ignored in bacterial genome annotations. About 10 years ago, focused efforts started to investigate whole peptidomes, which resulted in the discovery of a multitude of small proteins, but only a number of them have been characterized in detail. Generally, small proteins can be either membrane or cytosolic proteins. The latter interact with larger proteins, RNA or even metal ions. Here, we summarize our current knowledge on small proteins from Gram-positive bacteria with a special emphasis on the model organism Bacillus subtilis. Our examples include membrane-bound toxins of type I toxin-antitoxin systems, proteins that block the assembly of higher order structures, regulate sporulation or modulate the RNA degradosome. We do not consider antimicrobial peptides. Furthermore, we present methods for the identification and investigation of small proteins.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":null,"pages":null},"PeriodicalIF":10.1,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730256/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138487033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What the Hel: recent advances in understanding rifampicin resistance in bacteria. 什么是 Hel:了解细菌的利福平抗药性的最新进展。
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2023-11-01 DOI: 10.1093/femsre/fuac051
Petra Sudzinová, Hana Šanderová, Tomáš Koval', Tereza Skálová, Nabajyoti Borah, Jarmila Hnilicová, Tomáš Kouba, Jan Dohnálek, Libor Krásný
{"title":"What the Hel: recent advances in understanding rifampicin resistance in bacteria.","authors":"Petra Sudzinová, Hana Šanderová, Tomáš Koval', Tereza Skálová, Nabajyoti Borah, Jarmila Hnilicová, Tomáš Kouba, Jan Dohnálek, Libor Krásný","doi":"10.1093/femsre/fuac051","DOIUrl":"10.1093/femsre/fuac051","url":null,"abstract":"<p><p>Rifampicin is a clinically important antibiotic that binds to, and blocks the DNA/RNA channel of bacterial RNA polymerase (RNAP). Stalled, nonfunctional RNAPs can be removed from DNA by HelD proteins; this is important for maintenance of genome integrity. Recently, it was reported that HelD proteins from high G+C Actinobacteria, called HelR, are able to dissociate rifampicin-stalled RNAPs from DNA and provide rifampicin resistance. This is achieved by the ability of HelR proteins to dissociate rifampicin from RNAP. The HelR-mediated mechanism of rifampicin resistance is discussed here, and the roles of HelD/HelR in the transcriptional cycle are outlined. Moreover, the possibility that the structurally similar HelD proteins from low G+C Firmicutes may be also involved in rifampicin resistance is explored. Finally, the discovery of the involvement of HelR in rifampicin resistance provides a blueprint for analogous studies to reveal novel mechanisms of bacterial antibiotic resistance.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10719064/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10419419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial genome maintenance-the kinetoplast story. 线粒体基因组的维护--动粒体的故事。
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2023-11-01 DOI: 10.1093/femsre/fuac047
Simona Amodeo, Irina Bregy, Torsten Ochsenreiter
{"title":"Mitochondrial genome maintenance-the kinetoplast story.","authors":"Simona Amodeo, Irina Bregy, Torsten Ochsenreiter","doi":"10.1093/femsre/fuac047","DOIUrl":"10.1093/femsre/fuac047","url":null,"abstract":"<p><p>Mitochondrial DNA replication is an essential process in most eukaryotes. Similar to the diversity in mitochondrial genome size and organization in the different eukaryotic supergroups, there is considerable diversity in the replication process of the mitochondrial DNA. In this review, we summarize the current knowledge of mitochondrial DNA replication and the associated factors in trypanosomes with a focus on Trypanosoma brucei, and provide a new model of minicircle replication for this protozoan parasite. The model assumes the mitochondrial DNA (kinetoplast DNA, kDNA) of T. brucei to be loosely diploid in nature and the replication of the genome to occur at two replication centers at the opposing ends of the kDNA disc (also known as antipodal sites, APS). The new model is consistent with the localization of most replication factors and in contrast to the current model, it does not require the assumption of an unknown sorting and transport complex moving freshly replicated DNA to the APS. In combination with the previously proposed sexual stages of the parasite in the insect vector, the new model provides a mechanism for maintenance of the mitochondrial genetic diversity.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10719067/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40723114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of the extracellular matrix in Candida biofilm antifungal resistance. 细胞外基质在念珠菌生物膜抗真菌耐药性中的作用。
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2023-11-01 DOI: 10.1093/femsre/fuad059
Justin Massey, Robert Zarnowski, David Andes
{"title":"Role of the extracellular matrix in Candida biofilm antifungal resistance.","authors":"Justin Massey, Robert Zarnowski, David Andes","doi":"10.1093/femsre/fuad059","DOIUrl":"10.1093/femsre/fuad059","url":null,"abstract":"<p><p>Clinical infection due to Candida species frequently involve growth in biofilm communities. Recalcitrance despite antifungal therapy leads to disease persistence associated with high morbidity and mortality. Candida possesses several tools allowing evasion of antifungal effects. Among these, protection of biofilm cells via encasement by the extracellular matrix is responsible for a majority drug resistance phenotype. The Candida matrix composition is complex and includes a mannan-glucan complex linked to antifungal drug sequestration. This mechanism of resistance is conserved across the Candida genus and impacts each of the available antifungal drug classes. The exosome pathway is responsible for delivery and assembly of much of the Candida extracellular matrix as functional vesicle protein and polysaccharide cargo. Investigations demonstrate the vesicle matrix delivery pathway is a useful fungal biofilm drug target. Further elucidation of the vesicle pathway, as well as understanding the roles of biofilm driven cargo may provide additional targets to aid the diagnosis, prevention, and treatment of Candida biofilms.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41195977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exposing the small protein load of bacterial life. 暴露细菌生命的小蛋白质负荷。
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2023-11-01 DOI: 10.1093/femsre/fuad063
Laure Simoens, Igor Fijalkowski, Petra Van Damme
{"title":"Exposing the small protein load of bacterial life.","authors":"Laure Simoens, Igor Fijalkowski, Petra Van Damme","doi":"10.1093/femsre/fuad063","DOIUrl":"10.1093/femsre/fuad063","url":null,"abstract":"<p><p>The ever-growing repertoire of genomic techniques continues to expand our understanding of the true diversity and richness of prokaryotic genomes. Riboproteogenomics laid the foundation for dynamic studies of previously overlooked genomic elements. Most strikingly, bacterial genomes were revealed to harbor robust repertoires of small open reading frames (sORFs) encoding a diverse and broadly expressed range of small proteins, or sORF-encoded polypeptides (SEPs). In recent years, continuous efforts led to great improvements in the annotation and characterization of such proteins, yet many challenges remain to fully comprehend the pervasive nature of small proteins and their impact on bacterial biology. In this work, we review the recent developments in the dynamic field of bacterial genome reannotation, catalog the important biological roles carried out by small proteins and identify challenges obstructing the way to full understanding of these elusive proteins.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":null,"pages":null},"PeriodicalIF":11.3,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723866/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138444413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信