FEMS microbiology reviews最新文献

筛选
英文 中文
The vast landscape of carbohydrate fermentation in prokaryotes. 原核生物碳水化合物发酵的广阔前景
IF 10.1 2区 生物学
FEMS microbiology reviews Pub Date : 2024-06-20 DOI: 10.1093/femsre/fuae016
Timothy J Hackmann
{"title":"The vast landscape of carbohydrate fermentation in prokaryotes.","authors":"Timothy J Hackmann","doi":"10.1093/femsre/fuae016","DOIUrl":"10.1093/femsre/fuae016","url":null,"abstract":"<p><p>Fermentation is a type of metabolism carried out by organisms in environments without oxygen. Despite being studied for over 185 years, the diversity and complexity of this metabolism are just now becoming clear. Our review starts with the definition of fermentation, which has evolved over the years and which we help further refine. We then examine the range of organisms that carry out fermentation and their traits. Over one-fourth of all prokaryotes are fermentative, use more than 40 substrates, and release more than 50 metabolic end products. These insights come from studies analyzing records of thousands of organisms. Next, our review examines the complexity of fermentation at the biochemical level. We map out pathways of glucose fermentation in unprecedented detail, covering over 120 biochemical reactions. We also review recent studies coupling genomics and enzymology to reveal new pathways and enzymes. Our review concludes with practical applications for agriculture, human health, and industry. All these areas depend on fermentation and could be improved through manipulating fermentative microbes and enzymes. We discuss potential approaches for manipulation, including genetic engineering, electrofermentation, probiotics, and enzyme inhibitors. We hope our review underscores the importance of fermentation research and stimulates the next 185 years of study.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187502/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141183896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Escherichia coli DNA replication: the old model organism still holds many surprises. 大肠杆菌的 DNA 复制:这一古老的模式生物仍有许多惊喜。
IF 10.1 2区 生物学
FEMS microbiology reviews Pub Date : 2024-06-20 DOI: 10.1093/femsre/fuae018
Krystian Łazowski, Roger Woodgate, Iwona J Fijalkowska
{"title":"Escherichia coli DNA replication: the old model organism still holds many surprises.","authors":"Krystian Łazowski, Roger Woodgate, Iwona J Fijalkowska","doi":"10.1093/femsre/fuae018","DOIUrl":"10.1093/femsre/fuae018","url":null,"abstract":"<p><p>Research on Escherichia coli DNA replication paved the groundwork for many breakthrough discoveries with important implications for our understanding of human molecular biology, due to the high level of conservation of key molecular processes involved. To this day, it attracts a lot of attention, partially by virtue of being an important model organism, but also because the understanding of factors influencing replication fidelity might be important for studies on the emergence of antibiotic resistance. Importantly, the wide access to high-resolution single-molecule and live-cell imaging, whole genome sequencing, and cryo-electron microscopy techniques, which were greatly popularized in the last decade, allows us to revisit certain assumptions about the replisomes and offers very detailed insight into how they work. For many parts of the replisome, step-by-step mechanisms have been reconstituted, and some new players identified. This review summarizes the latest developments in the area, focusing on (a) the structure of the replisome and mechanisms of action of its components, (b) organization of replisome transactions and repair, (c) replisome dynamics, and (d) factors influencing the base and sugar fidelity of DNA synthesis.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253446/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determinants of bacterial survival and proliferation in blood. 细菌在血液中存活和增殖的决定因素。
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2024-05-08 DOI: 10.1093/femsre/fuae013
Pierre Lê-Bury, Hebert Echenique-Rivera, Javier Pizarro-Cerdá, Olivier Dussurget
{"title":"Determinants of bacterial survival and proliferation in blood.","authors":"Pierre Lê-Bury, Hebert Echenique-Rivera, Javier Pizarro-Cerdá, Olivier Dussurget","doi":"10.1093/femsre/fuae013","DOIUrl":"10.1093/femsre/fuae013","url":null,"abstract":"<p><p>Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163986/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epitopes in the HA and NA of H5 and H7 avian influenza viruses that are important for antigenic drift. 对抗原漂移至关重要的 H5 和 H7 禽流感病毒 HA 和 NA 表位。
IF 10.1 2区 生物学
FEMS microbiology reviews Pub Date : 2024-05-08 DOI: 10.1093/femsre/fuae014
Jasmina M Luczo, Erica Spackman
{"title":"Epitopes in the HA and NA of H5 and H7 avian influenza viruses that are important for antigenic drift.","authors":"Jasmina M Luczo, Erica Spackman","doi":"10.1093/femsre/fuae014","DOIUrl":"10.1093/femsre/fuae014","url":null,"abstract":"<p><p>Avian influenza viruses evolve antigenically to evade host immunity. Two influenza A virus surface glycoproteins, the haemagglutinin and neuraminidase, are the major targets of host immunity and undergo antigenic drift in response to host pre-existing humoral and cellular immune responses. Specific sites have been identified as important epitopes in prominent subtypes such as H5 and H7, which are of animal and public health significance due to their panzootic and pandemic potential. The haemagglutinin is the immunodominant immunogen, it has been extensively studied, and the antigenic reactivity is closely monitored to ensure candidate vaccine viruses are protective. More recently, the neuraminidase has received increasing attention for its role as a protective immunogen. The neuraminidase is expressed at a lower abundance than the haemagglutinin on the virus surface but does elicit a robust antibody response. This review aims to compile the current information on haemagglutinin and neuraminidase epitopes and immune escape mutants of H5 and H7 highly pathogenic avian influenza viruses. Understanding the evolution of immune escape mutants and the location of epitopes is critical for identification of vaccine strains and development of broadly reactive vaccines that can be utilized in humans and animals.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11149724/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diving into drug-screening: Zebrafish Embryos as an in vivo Platform for Antimicrobial Drug Discovery and Assessment 潜入药物筛选:斑马鱼胚胎作为抗菌药物发现和评估的体内平台
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2024-04-30 DOI: 10.1093/femsre/fuae011
Eva Habjan, Gina K Schouten, Alexander Speer, Peter van Ulsen, Wilbert Bitter
{"title":"Diving into drug-screening: Zebrafish Embryos as an in vivo Platform for Antimicrobial Drug Discovery and Assessment","authors":"Eva Habjan, Gina K Schouten, Alexander Speer, Peter van Ulsen, Wilbert Bitter","doi":"10.1093/femsre/fuae011","DOIUrl":"https://doi.org/10.1093/femsre/fuae011","url":null,"abstract":"The rise of multidrug-resistant bacteria underlines the need for innovative treatments, yet the introduction of new drugs has stagnated despite numerous antimicrobial discoveries. A major hurdle is a poor correlation between promising in vitro data and in vivo efficacy in animal models, which is essential for clinical development. Early in vivo testing is hindered by the expense and complexity of existing animal models. Therefore, there is a pressing need for cost-effective, rapid pre-clinical models with high translational value. To overcome these challenges, zebrafish embryos have emerged as an attractive model for infectious disease studies, offering advantages such as ethical alignment, rapid development, ease of maintenance, and genetic manipulability. The zebrafish embryo infection model, involving microinjection or immersion of pathogens and potential antibiotic hit compounds, provides a promising solution for early-stage drug screening. It offers a cost-effective and rapid means of assessing the efficacy, toxicity and mechanism of action of compounds in a whole-organism context. This review discusses the experimental design of this model, but also its benefits and challenges. Additionally, it highlights recently identified compounds in the zebrafish embryo infection model and discusses the relevance of the model in predicting the compound's clinical potential.","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"187 1","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140833443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An opportunistic pathogen under stress: how group B streptococcus responds to cytotoxic reactive species and conditions of metal ion imbalance to survive 压力下的机会性病原体:B 组链球菌如何应对细胞毒性反应物和金属离子失衡条件以求生存
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2024-04-27 DOI: 10.1093/femsre/fuae009
Kelvin G K Goh, Devika Desai, Ruby Thapa, Darren Prince, Dhruba Acharya, Matthew J Sullivan, Glen C Ulett
{"title":"An opportunistic pathogen under stress: how group B streptococcus responds to cytotoxic reactive species and conditions of metal ion imbalance to survive","authors":"Kelvin G K Goh, Devika Desai, Ruby Thapa, Darren Prince, Dhruba Acharya, Matthew J Sullivan, Glen C Ulett","doi":"10.1093/femsre/fuae009","DOIUrl":"https://doi.org/10.1093/femsre/fuae009","url":null,"abstract":"Group B Streptococcus (GBS; also known as Streptococcus agalactiae) is an opportunistic bacterial pathogen that causes sepsis, meningitis, pneumonia and skin and soft tissue infections in neonates and healthy or immunocompromised adults. GBS is well-adapted to survive in humans due to a plethora of virulence mechanisms that afford responses to support bacterial survival in dynamic host environments. These mechanisms and responses include counteraction of cell death from exposure to excess metal ions that can cause mismetallation and cytotoxicity, and strategies to combat molecules such as reactive oxygen and nitrogen species that are generated as part of innate host defence. Cytotoxicity from reactive molecules can stem from damage to proteins, DNA, and membrane lipids, potentially leading to bacterial cell death inside phagocytic cells or within extracellular spaces within the host. Deciphering the ways in which GBS responds to the stress of cytotoxic reactive molecules within the host will benefit the development of novel therapeutic and preventative strategies to manage the burden of GBS disease. This review summarises knowledge of GBS carriage in humans and the mechanisms used by the bacteria to circumvent killing by these important elements of host immune defence: oxidative stress, nitrosative stress, and stress from metal ion intoxication/mismetallation.","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"38 1","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Louis Pasteur, a child of the Jura, a man for the world 路易-巴斯德,一个汝拉的孩子,一个为世界而生的人
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2024-04-25 DOI: 10.1093/femsre/fuae010
Daniel Raichvarg, Tomasz Jagielski
{"title":"Louis Pasteur, a child of the Jura, a man for the world","authors":"Daniel Raichvarg, Tomasz Jagielski","doi":"10.1093/femsre/fuae010","DOIUrl":"https://doi.org/10.1093/femsre/fuae010","url":null,"abstract":"How did Louis Pasteur, born in a small town in the Jura—Dole, still little known to the world today, become a man of global recognition and fame? The answer to this question is guided by two pivotal considerations. First is Pasteur's relationship to the representation of reality. This relationship was seeded and steadily developed since his juvenile years through practicing different forms of artistic expression, the most famous of which were subtle pastels portraying Pasteur's parents and neighbors. This genuine attraction towards art gradually became «scientificized» at the same time, when new means of reproducing the reality were invented, such as photography. The second consideration, critical to understand the phenomenon of Pasteur's celebrity, is a strong linkage of his research with nature-based agricultural production. Here again, deeply rooted in his youth and home environment, permeated with the taste of wine and the smell of tanned leather, Pasteur's interests necessitated the processes of communication, not only at the scientific level, but also on a daily life basis, with numerous «social actors» at play (ferments, silkworms etc.). Throughout his work, Pasteur had to provide himself with the means to set up these interdisciplinarity and communication. The final result was the Pasteur Institute, or rather the Pasteur Institutes and the global Pasteur network.","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"32 1","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models. 细菌性肺炎的体外模型:对广泛应用的复杂细胞培养模型的比较分析。
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2024-03-01 DOI: 10.1093/femsre/fuae007
Laure Mahieu, Laurence Van Moll, Linda De Vooght, Peter Delputte, Paul Cos
{"title":"In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models.","authors":"Laure Mahieu, Laurence Van Moll, Linda De Vooght, Peter Delputte, Paul Cos","doi":"10.1093/femsre/fuae007","DOIUrl":"10.1093/femsre/fuae007","url":null,"abstract":"<p><p>Bacterial pneumonia greatly contributes to the disease burden and mortality of lower respiratory tract infections among all age groups and risk profiles. Therefore, laboratory modelling of bacterial pneumonia remains important for elucidating the complex host-pathogen interactions and to determine drug efficacy and toxicity. In vitro cell culture enables for the creation of high-throughput, specific disease models in a tightly controlled environment. Advanced human cell culture models specifically, can bridge the research gap between the classical two-dimensional cell models and animal models. This review provides an overview of the current status of the development of complex cellular in vitro models to study bacterial pneumonia infections, with a focus on air-liquid interface models, spheroid, organoid, and lung-on-a-chip models. For the wide scale, comparative literature search, we selected six clinically highly relevant bacteria (Pseudomonas aeruginosa, Mycoplasma pneumoniae, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). We reviewed the cell lines that are commonly used, as well as trends and discrepancies in the methodology, ranging from cell infection parameters to assay read-outs. We also highlighted the importance of model validation and data transparency in guiding the research field towards more complex infection models.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913945/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139971482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Life at the borderlands: microbiomes of interfaces critical to One Health. 边境地区的生命:对 "一体健康 "至关重要的界面微生物组。
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2024-03-01 DOI: 10.1093/femsre/fuae008
Simon R Law, Falko Mathes, Amy M Paten, Pamela A Alexandre, Roshan Regmi, Cameron Reid, Azadeh Safarchi, Shaktivesh Shaktivesh, Yanan Wang, Annaleise Wilson, Scott A Rice, Vadakattu V S R Gupta
{"title":"Life at the borderlands: microbiomes of interfaces critical to One Health.","authors":"Simon R Law, Falko Mathes, Amy M Paten, Pamela A Alexandre, Roshan Regmi, Cameron Reid, Azadeh Safarchi, Shaktivesh Shaktivesh, Yanan Wang, Annaleise Wilson, Scott A Rice, Vadakattu V S R Gupta","doi":"10.1093/femsre/fuae008","DOIUrl":"10.1093/femsre/fuae008","url":null,"abstract":"<p><p>Microbiomes are foundational components of the environment that provide essential services relating to food security, carbon sequestration, human health, and the overall well-being of ecosystems. Microbiota exert their effects primarily through complex interactions at interfaces with their plant, animal, and human hosts, as well as within the soil environment. This review aims to explore the ecological, evolutionary, and molecular processes governing the establishment and function of microbiome-host relationships, specifically at interfaces critical to One Health-a transdisciplinary framework that recognizes that the health outcomes of people, animals, plants, and the environment are tightly interconnected. Within the context of One Health, the core principles underpinning microbiome assembly will be discussed in detail, including biofilm formation, microbial recruitment strategies, mechanisms of microbial attachment, community succession, and the effect these processes have on host function and health. Finally, this review will catalogue recent advances in microbiology and microbial ecology methods that can be used to profile microbial interfaces, with particular attention to multi-omic, advanced imaging, and modelling approaches. These technologies are essential for delineating the general and specific principles governing microbiome assembly and functions, mapping microbial interconnectivity across varying spatial and temporal scales, and for the establishment of predictive frameworks that will guide the development of targeted microbiome-interventions to deliver One Health outcomes.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10977922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution and emergence of Mycobacterium tuberculosis. 结核分枝杆菌的进化和出现。
IF 10.1 2区 生物学
FEMS microbiology reviews Pub Date : 2024-03-01 DOI: 10.1093/femsre/fuae006
Mickael Orgeur, Camille Sous, Jan Madacki, Roland Brosch
{"title":"Evolution and emergence of Mycobacterium tuberculosis.","authors":"Mickael Orgeur, Camille Sous, Jan Madacki, Roland Brosch","doi":"10.1093/femsre/fuae006","DOIUrl":"10.1093/femsre/fuae006","url":null,"abstract":"<p><p>Tuberculosis (TB) remains one of the deadliest infectious diseases in human history, prevailing even in the 21st century. The causative agents of TB are represented by a group of closely related bacteria belonging to the Mycobacterium tuberculosis complex (MTBC), which can be subdivided into several lineages of human- and animal-adapted strains, thought to have shared a last common ancestor emerged by clonal expansion from a pool of recombinogenic Mycobacterium canettii-like tubercle bacilli. A better understanding of how MTBC populations evolved from less virulent mycobacteria may allow for discovering improved TB control strategies and future epidemiologic trends. In this review, we highlight new insights into the evolution of mycobacteria at the genus level, describing different milestones in the evolution of mycobacteria, with a focus on the genomic events that have likely enabled the emergence and the dominance of the MTBC. We also review the recent literature describing the various MTBC lineages and highlight their particularities and differences with a focus on host preferences and geographic distribution. Finally, we discuss on putative mechanisms driving the evolution of tubercle bacilli and mycobacteria in general, by taking the mycobacteria-specific distributive conjugal transfer as an example.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906988/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139746508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信