FEMS microbiology reviews最新文献

筛选
英文 中文
An opportunistic pathogen under stress: how group B streptococcus responds to cytotoxic reactive species and conditions of metal ion imbalance to survive 压力下的机会性病原体:B 组链球菌如何应对细胞毒性反应物和金属离子失衡条件以求生存
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2024-04-27 DOI: 10.1093/femsre/fuae009
Kelvin G K Goh, Devika Desai, Ruby Thapa, Darren Prince, Dhruba Acharya, Matthew J Sullivan, Glen C Ulett
{"title":"An opportunistic pathogen under stress: how group B streptococcus responds to cytotoxic reactive species and conditions of metal ion imbalance to survive","authors":"Kelvin G K Goh, Devika Desai, Ruby Thapa, Darren Prince, Dhruba Acharya, Matthew J Sullivan, Glen C Ulett","doi":"10.1093/femsre/fuae009","DOIUrl":"https://doi.org/10.1093/femsre/fuae009","url":null,"abstract":"Group B Streptococcus (GBS; also known as Streptococcus agalactiae) is an opportunistic bacterial pathogen that causes sepsis, meningitis, pneumonia and skin and soft tissue infections in neonates and healthy or immunocompromised adults. GBS is well-adapted to survive in humans due to a plethora of virulence mechanisms that afford responses to support bacterial survival in dynamic host environments. These mechanisms and responses include counteraction of cell death from exposure to excess metal ions that can cause mismetallation and cytotoxicity, and strategies to combat molecules such as reactive oxygen and nitrogen species that are generated as part of innate host defence. Cytotoxicity from reactive molecules can stem from damage to proteins, DNA, and membrane lipids, potentially leading to bacterial cell death inside phagocytic cells or within extracellular spaces within the host. Deciphering the ways in which GBS responds to the stress of cytotoxic reactive molecules within the host will benefit the development of novel therapeutic and preventative strategies to manage the burden of GBS disease. This review summarises knowledge of GBS carriage in humans and the mechanisms used by the bacteria to circumvent killing by these important elements of host immune defence: oxidative stress, nitrosative stress, and stress from metal ion intoxication/mismetallation.","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"38 1","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Louis Pasteur, a child of the Jura, a man for the world 路易-巴斯德,一个汝拉的孩子,一个为世界而生的人
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2024-04-25 DOI: 10.1093/femsre/fuae010
Daniel Raichvarg, Tomasz Jagielski
{"title":"Louis Pasteur, a child of the Jura, a man for the world","authors":"Daniel Raichvarg, Tomasz Jagielski","doi":"10.1093/femsre/fuae010","DOIUrl":"https://doi.org/10.1093/femsre/fuae010","url":null,"abstract":"How did Louis Pasteur, born in a small town in the Jura—Dole, still little known to the world today, become a man of global recognition and fame? The answer to this question is guided by two pivotal considerations. First is Pasteur's relationship to the representation of reality. This relationship was seeded and steadily developed since his juvenile years through practicing different forms of artistic expression, the most famous of which were subtle pastels portraying Pasteur's parents and neighbors. This genuine attraction towards art gradually became «scientificized» at the same time, when new means of reproducing the reality were invented, such as photography. The second consideration, critical to understand the phenomenon of Pasteur's celebrity, is a strong linkage of his research with nature-based agricultural production. Here again, deeply rooted in his youth and home environment, permeated with the taste of wine and the smell of tanned leather, Pasteur's interests necessitated the processes of communication, not only at the scientific level, but also on a daily life basis, with numerous «social actors» at play (ferments, silkworms etc.). Throughout his work, Pasteur had to provide himself with the means to set up these interdisciplinarity and communication. The final result was the Pasteur Institute, or rather the Pasteur Institutes and the global Pasteur network.","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"32 1","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models. 细菌性肺炎的体外模型:对广泛应用的复杂细胞培养模型的比较分析。
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2024-03-01 DOI: 10.1093/femsre/fuae007
Laure Mahieu, Laurence Van Moll, Linda De Vooght, Peter Delputte, Paul Cos
{"title":"In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models.","authors":"Laure Mahieu, Laurence Van Moll, Linda De Vooght, Peter Delputte, Paul Cos","doi":"10.1093/femsre/fuae007","DOIUrl":"10.1093/femsre/fuae007","url":null,"abstract":"<p><p>Bacterial pneumonia greatly contributes to the disease burden and mortality of lower respiratory tract infections among all age groups and risk profiles. Therefore, laboratory modelling of bacterial pneumonia remains important for elucidating the complex host-pathogen interactions and to determine drug efficacy and toxicity. In vitro cell culture enables for the creation of high-throughput, specific disease models in a tightly controlled environment. Advanced human cell culture models specifically, can bridge the research gap between the classical two-dimensional cell models and animal models. This review provides an overview of the current status of the development of complex cellular in vitro models to study bacterial pneumonia infections, with a focus on air-liquid interface models, spheroid, organoid, and lung-on-a-chip models. For the wide scale, comparative literature search, we selected six clinically highly relevant bacteria (Pseudomonas aeruginosa, Mycoplasma pneumoniae, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). We reviewed the cell lines that are commonly used, as well as trends and discrepancies in the methodology, ranging from cell infection parameters to assay read-outs. We also highlighted the importance of model validation and data transparency in guiding the research field towards more complex infection models.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913945/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139971482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Life at the borderlands: microbiomes of interfaces critical to One Health. 边境地区的生命:对 "一体健康 "至关重要的界面微生物组。
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2024-03-01 DOI: 10.1093/femsre/fuae008
Simon R Law, Falko Mathes, Amy M Paten, Pamela A Alexandre, Roshan Regmi, Cameron Reid, Azadeh Safarchi, Shaktivesh Shaktivesh, Yanan Wang, Annaleise Wilson, Scott A Rice, Vadakattu V S R Gupta
{"title":"Life at the borderlands: microbiomes of interfaces critical to One Health.","authors":"Simon R Law, Falko Mathes, Amy M Paten, Pamela A Alexandre, Roshan Regmi, Cameron Reid, Azadeh Safarchi, Shaktivesh Shaktivesh, Yanan Wang, Annaleise Wilson, Scott A Rice, Vadakattu V S R Gupta","doi":"10.1093/femsre/fuae008","DOIUrl":"10.1093/femsre/fuae008","url":null,"abstract":"<p><p>Microbiomes are foundational components of the environment that provide essential services relating to food security, carbon sequestration, human health, and the overall well-being of ecosystems. Microbiota exert their effects primarily through complex interactions at interfaces with their plant, animal, and human hosts, as well as within the soil environment. This review aims to explore the ecological, evolutionary, and molecular processes governing the establishment and function of microbiome-host relationships, specifically at interfaces critical to One Health-a transdisciplinary framework that recognizes that the health outcomes of people, animals, plants, and the environment are tightly interconnected. Within the context of One Health, the core principles underpinning microbiome assembly will be discussed in detail, including biofilm formation, microbial recruitment strategies, mechanisms of microbial attachment, community succession, and the effect these processes have on host function and health. Finally, this review will catalogue recent advances in microbiology and microbial ecology methods that can be used to profile microbial interfaces, with particular attention to multi-omic, advanced imaging, and modelling approaches. These technologies are essential for delineating the general and specific principles governing microbiome assembly and functions, mapping microbial interconnectivity across varying spatial and temporal scales, and for the establishment of predictive frameworks that will guide the development of targeted microbiome-interventions to deliver One Health outcomes.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10977922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution and emergence of Mycobacterium tuberculosis. 结核分枝杆菌的进化和出现。
IF 10.1 2区 生物学
FEMS microbiology reviews Pub Date : 2024-03-01 DOI: 10.1093/femsre/fuae006
Mickael Orgeur, Camille Sous, Jan Madacki, Roland Brosch
{"title":"Evolution and emergence of Mycobacterium tuberculosis.","authors":"Mickael Orgeur, Camille Sous, Jan Madacki, Roland Brosch","doi":"10.1093/femsre/fuae006","DOIUrl":"10.1093/femsre/fuae006","url":null,"abstract":"<p><p>Tuberculosis (TB) remains one of the deadliest infectious diseases in human history, prevailing even in the 21st century. The causative agents of TB are represented by a group of closely related bacteria belonging to the Mycobacterium tuberculosis complex (MTBC), which can be subdivided into several lineages of human- and animal-adapted strains, thought to have shared a last common ancestor emerged by clonal expansion from a pool of recombinogenic Mycobacterium canettii-like tubercle bacilli. A better understanding of how MTBC populations evolved from less virulent mycobacteria may allow for discovering improved TB control strategies and future epidemiologic trends. In this review, we highlight new insights into the evolution of mycobacteria at the genus level, describing different milestones in the evolution of mycobacteria, with a focus on the genomic events that have likely enabled the emergence and the dominance of the MTBC. We also review the recent literature describing the various MTBC lineages and highlight their particularities and differences with a focus on host preferences and geographic distribution. Finally, we discuss on putative mechanisms driving the evolution of tubercle bacilli and mycobacteria in general, by taking the mycobacteria-specific distributive conjugal transfer as an example.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906988/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139746508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards a rational approach to promoter engineering: understanding the complexity of transcription initiation in prokaryotes. 启动子工程的合理方法:了解原核生物转录启动的复杂性。
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2024-03-01 DOI: 10.1093/femsre/fuae004
Cara Deal, Lien De Wannemaeker, Marjan De Mey
{"title":"Towards a rational approach to promoter engineering: understanding the complexity of transcription initiation in prokaryotes.","authors":"Cara Deal, Lien De Wannemaeker, Marjan De Mey","doi":"10.1093/femsre/fuae004","DOIUrl":"10.1093/femsre/fuae004","url":null,"abstract":"<p><p>Promoter sequences are important genetic control elements. Through their interaction with RNA polymerase they determine transcription strength and specificity, thereby regulating the first step in gene expression. Consequently, they can be targeted as elements to control predictability and tuneability of a genetic circuit, which is essential in applications such as the development of robust microbial cell factories. This review considers the promoter elements implicated in the three stages of transcription initiation, detailing the complex interplay of sequence-specific interactions that are involved, and highlighting that DNA sequence features beyond the core promoter elements work in a combinatorial manner to determine transcriptional strength. In particular, we emphasize that, aside from promoter recognition, transcription initiation is also defined by the kinetics of open complex formation and promoter escape, which are also known to be highly sequence specific. Significantly, we focus on how insights into these interactions can be manipulated to lay the foundation for a more rational approach to promoter engineering.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10911233/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radioactive waste microbiology: predicting microbial survival and activity in changing extreme environments. 放射性废物微生物学:预测微生物在不断变化的极端环境中的生存和活动。
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2024-01-12 DOI: 10.1093/femsre/fuae001
Simon P Gregory, Jessica R M Mackie, Megan J Barnett
{"title":"Radioactive waste microbiology: predicting microbial survival and activity in changing extreme environments.","authors":"Simon P Gregory, Jessica R M Mackie, Megan J Barnett","doi":"10.1093/femsre/fuae001","DOIUrl":"10.1093/femsre/fuae001","url":null,"abstract":"<p><p>The potential for microbial activity to occur within the engineered barrier system (EBS) of a geological disposal facility (GDF) for radioactive waste is acknowledged by waste management organizations as it could affect many aspects of the safety functions of a GDF. Microorganisms within an EBS will be exposed to changing temperature, pH, radiation, salinity, saturation, and availability of nutrient and energy sources, which can limit microbial survival and activity. Some of the limiting conditions are incorporated into GDF designs for safety reasons, including the high pH of cementitious repositories, the limited pore space of bentonite-based repositories, or the high salinity of GDFs in evaporitic geologies. Other environmental conditions such as elevated radiation, temperature, and desiccation, arise as a result of the presence of high heat generating waste (HHGW). Here, we present a comprehensive review of how environmental conditions in the EBS may limit microbial activity, covering HHGW and lower heat generating waste (LHGW) in a range of geological environments. We present data from the literature on the currently recognized limits to life for each of the environmental conditions described above, and nutrient availability to establish the potential for life in these environments. Using examples where each variable has been modelled for a particular GDF, we outline the times and locations when that variable can be expected to limit microbial activity. Finally, we show how this information for multiple variables can be used to improve our understanding of the potential for microbial activity to occur within the EBS of a GDF and, more broadly, to understand microbial life in changing environments exposed to multiple extreme conditions.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853057/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139432373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-talk between immunity and behavior: insights from entomopathogenic fungi and their insect hosts. 免疫与行为之间的相互影响:昆虫病原真菌及其昆虫宿主的启示。
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2024-01-12 DOI: 10.1093/femsre/fuae003
Wei Zhang, Xuanyu Chen, Ioannis Eleftherianos, Amr Mohamed, Ashley Bastin, Nemat O Keyhani
{"title":"Cross-talk between immunity and behavior: insights from entomopathogenic fungi and their insect hosts.","authors":"Wei Zhang, Xuanyu Chen, Ioannis Eleftherianos, Amr Mohamed, Ashley Bastin, Nemat O Keyhani","doi":"10.1093/femsre/fuae003","DOIUrl":"10.1093/femsre/fuae003","url":null,"abstract":"<p><p>Insects are one of the most successful animals in nature, and entomopathogenic fungi play a significant role in the natural epizootic control of insect populations in many ecosystems. The interaction between insects and entomopathogenic fungi has continuously coevolved over hundreds of millions of years. Many components of the insect innate immune responses against fungal infection are conserved across phyla. Additionally, behavioral responses, which include avoidance, grooming, and/or modulation of body temperature, have been recognized as important mechanisms for opposing fungal pathogens. In an effort to investigate possible cross-talk and mediating mechanisms between these fundamental biological processes, recent studies have integrated and/or explored immune and behavioral responses. Current information indicates that during discrete stages of fungal infection, several insect behavioral and immune responses are altered simultaneously, suggesting important connections between the two systems. This review synthesizes recent advances in our understanding of the physiological and molecular aspects influencing cross-talk between behavioral and innate immune antifungal reactions, including chemical perception and olfactory pathways.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10883697/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139716000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of human extracellular matrix proteins in defining Staphylococcus aureus biofilm infections. 人类细胞外基质蛋白在确定金黄色葡萄球菌生物膜感染中的作用。
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2024-01-12 DOI: 10.1093/femsre/fuae002
Mohini Bhattacharya, Alexander R Horswill
{"title":"The role of human extracellular matrix proteins in defining Staphylococcus aureus biofilm infections.","authors":"Mohini Bhattacharya, Alexander R Horswill","doi":"10.1093/femsre/fuae002","DOIUrl":"10.1093/femsre/fuae002","url":null,"abstract":"<p><p>Twenty to forty one percent of the world's population is either transiently or permanently colonized by the Gram-positive bacterium, Staphylococcus aureus. In 2017, the CDC designated methicillin-resistant S. aureus (MRSA) as a serious threat, reporting ∼300 000 cases of MRSA-associated hospitalizations annually, resulting in over 19 000 deaths, surpassing that of HIV in the USA. S. aureus is a proficient biofilm-forming organism that rapidly acquires resistance to antibiotics, most commonly methicillin (MRSA). This review focuses on a large group of (>30) S. aureus adhesins, either surface-associated or secreted that are designed to specifically bind to 15 or more of the proteins that form key components of the human extracellular matrix (hECM). Importantly, this includes hECM proteins that are pivotal to the homeostasis of almost every tissue environment [collagen (skin), proteoglycans (lung), hemoglobin (blood), elastin, laminin, fibrinogen, fibronectin, and fibrin (multiple organs)]. These adhesins offer S. aureus the potential to establish an infection in every sterile tissue niche. These infections often endure repeated immune onslaught, developing into chronic, biofilm-associated conditions that are tolerant to ∼1000 times the clinically prescribed dose of antibiotics. Depending on the infection and the immune response, this allows S. aureus to seamlessly transition from colonizer to pathogen by subtly manipulating the host against itself while providing the time and stealth that it requires to establish and persist as a biofilm. This is a comprehensive discussion of the interaction between S. aureus biofilms and the hECM. We provide particular focus on the role of these interactions in pathogenesis and, consequently, the clinical implications for the prevention and treatment of S. aureus biofilm infections.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873506/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139711862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Connecting the dots: key insights on ParB for chromosome segregation from single-molecule studies. 连点成线:从单分子研究中了解 ParB 在染色体分离中的关键作用。
IF 11.3 2区 生物学
FEMS microbiology reviews Pub Date : 2024-01-12 DOI: 10.1093/femsre/fuad067
Miloš Tišma, Jovana Kaljević, Stephan Gruber, Tung B K Le, Cees Dekker
{"title":"Connecting the dots: key insights on ParB for chromosome segregation from single-molecule studies.","authors":"Miloš Tišma, Jovana Kaljević, Stephan Gruber, Tung B K Le, Cees Dekker","doi":"10.1093/femsre/fuad067","DOIUrl":"10.1093/femsre/fuad067","url":null,"abstract":"<p><p>Bacterial cells require DNA segregation machinery to properly distribute a genome to both daughter cells upon division. The most common system involved in chromosome and plasmid segregation in bacteria is the ParABS system. A core protein of this system - partition protein B (ParB) - regulates chromosome organization and chromosome segregation during the bacterial cell cycle. Over the past decades, research has greatly advanced our knowledge of the ParABS system. However, many intricate details of the mechanism of ParB proteins were only recently uncovered using in vitro single-molecule techniques. These approaches allowed the exploration of ParB proteins in precisely controlled environments, free from the complexities of the cellular milieu. This review covers the early developments of this field but emphasizes recent advances in our knowledge of the mechanistic understanding of ParB proteins as revealed by in vitro single-molecule methods. Furthermore, we provide an outlook on future endeavors in investigating ParB, ParB-like proteins, and their interaction partners.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139032156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信