{"title":"Correction to: Biodiversity of microorganisms in the Baltic Sea: the power of novel methods in the identification of marine microbes.","authors":"","doi":"10.1093/femsre/fuaf002","DOIUrl":"10.1093/femsre/fuaf002","url":null,"abstract":"","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"49 ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756286/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marisa Valentine, Duncan Wilson, Mark S Gresnigt, Bernhard Hube
{"title":"Vaginal Candida albicans infections: host-pathogen-microbiome interactions.","authors":"Marisa Valentine, Duncan Wilson, Mark S Gresnigt, Bernhard Hube","doi":"10.1093/femsre/fuaf013","DOIUrl":"10.1093/femsre/fuaf013","url":null,"abstract":"<p><p>Candida albicans is a fungus that colonizes the gut, oral, and vaginal mucosae of most humans without causing disease. However, under certain predisposing conditions this fungus can cause disease. Candida albicans has several factors and attributes that facilitate its commensal and pathogenic lifestyles including the transition from a yeast to a hyphal morphology, which is accompanied by the expression of virulence factors. These factors are central in candidiasis that can range from invasive to superficial. This review focuses on one example of a superficial disease, i.e. vulvovaginal candidiasis (VVC) that affects ~75% of women at least once with some experiencing four or more symptomatic infections per year (RVVC). During VVC, fungal factors trigger inflammation, which is maintained by a dysregulated innate immune response. This in turn leads to immunopathology and symptoms. Another unique characteristic of the vaginal niche, is its Lactobacillus-dominated microbiota with low species diversity that is believed to antagonize C. albicans pathogenicity. The importance of the interactions between C. albicans, the host, and vaginal microbiota during commensalism and (R)VVC is discussed in this review, which also addresses the application of this knowledge to identify novel treatment strategies and to study vaginal C. albicans infections.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"49 ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12071381/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144063155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biodegradation of synthetic organic pollutants: principles, progress, problems, and perspectives.","authors":"Yue Huang, Yu Deng, Ke Yu, Bing Li, Tong Zhang","doi":"10.1093/femsre/fuaf043","DOIUrl":"10.1093/femsre/fuaf043","url":null,"abstract":"<p><p>Biodegradation plays a pivotal role in controlling environmental pollution. Naturally occurring microbes can degrade various environmental pollutants; however, the bioremediation of emerging pollutants resulting from the synthesis of recalcitrant organic compounds has not been sufficiently studied. These compounds pose significant environmental risks when released into soil and water bodies. Therefore, it is essential to accelerate the acquisition of knowledge on their biodegradation and foster the development of advanced bioremediation strategies. Recent progress in sequencing technologies and high-precision analytical instruments, coupled with ever-increasing computing power, has revolutionized conventional biodegradation research. In this review, the fundamental principles and commonly used techniques in bacteria-mediated biodegradation were discussed, emphasizing an integrated approach for a comprehensive understanding of the biodegradation process. This review provides in-depth insights into the current progress and prospects of biodegradation research.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":12.3,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448294/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144948010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elizabet Monteagudo-Cascales, Mario Cano-Muñoz, Roberta Genova, Juan J Cabrera, Miguel A Matilla, Tino Krell
{"title":"Thermal shift assay to identify ligands for bacterial sensor proteins.","authors":"Elizabet Monteagudo-Cascales, Mario Cano-Muñoz, Roberta Genova, Juan J Cabrera, Miguel A Matilla, Tino Krell","doi":"10.1093/femsre/fuaf033","DOIUrl":"10.1093/femsre/fuaf033","url":null,"abstract":"<p><p>Bacteria sense and respond to changing environmental conditions using a diverse range of receptors. Currently, the signals recognized by most receptors remain unknown, thereby limiting our understanding of their function. Since its introduction a decade ago, ligand screening by the thermal-shift assay has identified the signal molecules recognized by numerous receptors, solute-binding proteins, and transcriptional regulators. This progress is summarized in this review. Signal identification is facilitated by the fact that ligand-binding domains can be generated as individual soluble proteins that retain the signal-binding capabilities of the full-length proteins. Various issues relevant to the reliability of the thermal shift assay are discussed, including false-positive and false-negative results, the value of a protein pH screen prior to ligand screening, and the need to verify results with methods for the direct study of ligand binding, such as isothermal titration calorimetry. This review was inspired by the XVIII conference on Bacterial Locomotion and Signal Transduction (Cancun, January 2025), where several notable advances were reported based on the application of the thermal shift assay.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":12.3,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12358799/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144729044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hee-Won Bae, Shin-Yae Choi, Hyeong-Jun Ki, You-Hee Cho
{"title":"Pseudomonas aeruginosa as a model bacterium in antiphage defense research.","authors":"Hee-Won Bae, Shin-Yae Choi, Hyeong-Jun Ki, You-Hee Cho","doi":"10.1093/femsre/fuaf014","DOIUrl":"https://doi.org/10.1093/femsre/fuaf014","url":null,"abstract":"<p><p>Bacteriophages, or phages, depend on their bacterial hosts for proliferation, leading to a coevolutionary relationship characterized by on-going arms races, where bacteria evolve diverse antiphage defense systems. The development of in silico methods and high-throughput screening techniques has dramatically expanded our understanding of bacterial antiphage defense systems, enormously increasing the known repertoire of the distinct mechanisms across various bacterial species. These advances have revealed that bacterial antiphage defense systems exhibit a remarkable level of complexity, ranging from highly conserved to specialized mechanisms, underscoring the intricate nature of bacterial antiphage defense systems. In this review, we provide a concise snapshot of antiphage defense research highlighting two preponderantly commandeered approaches and classification of the known antiphage defense systems. A special focus is placed on the model bacterial pathogen, Pseudomonas aeruginosa in antiphage defense research. We explore the complexity and adaptability of these systems, which play crucial roles in genome evolution and adaptation of P. aeruginosa in response to an arsenal of diverse phage strains, emphasizing the importance of this organism as a key emerging model bacterium in recent antiphage defense research.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":"49 ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035536/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143994516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Petr Pyszko, Hana Šigutová, Jan Ševčík, Michaela Drgová, Denisa Hařovská, Pavel Drozd
{"title":"Ambrosia gall midges (Diptera: Cecidomyiidae) and their microbial symbionts as a neglected model of fungus-farming evolution.","authors":"Petr Pyszko, Hana Šigutová, Jan Ševčík, Michaela Drgová, Denisa Hařovská, Pavel Drozd","doi":"10.1093/femsre/fuaf010","DOIUrl":"10.1093/femsre/fuaf010","url":null,"abstract":"<p><p>Ambrosia gall midges (AGMs) represent an intriguing group within the Cecidomyiidae, one of the most diversified dipteran families. AGMs form galls on plants, where they cultivate and consume fungal symbionts (phytomycetophagy). This mutualistic relationship may play a critical role in larval nutrition, gall morphogenesis, and protection against natural enemies. Although most other fungus-farming taxa have been intensively studied, AGMs have largely been neglected. This review synthesizes current knowledge on the diversity, biology, and ecological interactions of AGM, highlighting the intricate relationships with their fungal symbionts. The implications for adaptive radiation and speciation are critically considered, including how fungal associations may have facilitated ecological flexibility and diversification. We also tackle the processes of coevolution, not only between AGM and their fungal symbionts but also involving plants and parasitoids. We identify the most pressing issues and discrepancies in the current understanding the AGM-fungi interactions. Key areas of future research should include elucidating fungal acquisition and transmission mechanisms, determining the specificity and diversity of AGM-associated fungal communities, understanding the evolutionary pathways leading to phytomycetophagy, and addressing taxonomic challenges within the AGM group, where species identification has been complicated by reliance on gall morphology and host specificity.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11997659/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143771668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valentina Méndez, Mario Sepúlveda, Katherin Izquierdo-Fiallo, Constanza C Macaya, Teresa Esparza, Ximena Báez-Matus, Roberto E Durán, Gloria Levicán, Michael Seeger
{"title":"Surfing in the storm: how Paraburkholderia xenovorans thrives under stress during biodegradation of toxic aromatic compounds and other stressors.","authors":"Valentina Méndez, Mario Sepúlveda, Katherin Izquierdo-Fiallo, Constanza C Macaya, Teresa Esparza, Ximena Báez-Matus, Roberto E Durán, Gloria Levicán, Michael Seeger","doi":"10.1093/femsre/fuaf021","DOIUrl":"10.1093/femsre/fuaf021","url":null,"abstract":"<p><p>The adaptive mechanisms of Burkholderiales during the catabolism of aromatic compounds and abiotic stress are crucial for their fitness and performance. The aims of this report are to review the bacterial adaptation mechanisms to aromatic compounds, oxidative stress, and environmental stressful conditions, focusing on the model aromatic-degrading Paraburkholderia xenovorans LB400, other Burkholderiales, and relevant degrading bacteria. These mechanisms include (i) the stress response during aromatic degradation, (ii) the oxidative stress response to aromatic compounds, (iii) the metabolic adaptation to oxidative stress, (iv) the osmoadaptation to saline stress, (v) the synthesis of siderophore during iron limitation, (vi) the proteostasis network, which plays a crucial role in cellular function maintenance, and (vii) the modification of cellular membranes, morphology, and bacterial lifestyle. Remarkably, we include, for the first time, novel genomic analyses on proteostasis networks, carbon metabolism modulation, and the synthesis of stress-related molecules in P. xenovorans. We analyzed these metabolic features in silico to gain insights into the adaptive strategies of P. xenovorans to challenging environmental conditions. Understanding how to enhance bacterial stress responses can lead to the selection of more robust strains capable of thriving in polluted environments, which is critical for improving biodegradation and bioremediation strategies.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144101592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alex E Mohr, Núria Mach, Jamie Pugh, Gregory J Grosicki, Jacob M Allen, J Philip Karl, Corrie M Whisner
{"title":"Mechanisms underlying alterations of the gut microbiota by exercise and their role in shaping ecological resilience.","authors":"Alex E Mohr, Núria Mach, Jamie Pugh, Gregory J Grosicki, Jacob M Allen, J Philip Karl, Corrie M Whisner","doi":"10.1093/femsre/fuaf037","DOIUrl":"10.1093/femsre/fuaf037","url":null,"abstract":"<p><p>The gut microbiota (GM) is a dynamic ecosystem intricately linked to human health, including metabolic, immune, endocrine, and gastrointestinal functions. Exercise is recognized as a significant modifier of this microbial ecosystem, yet the complexities of this relationship are underexplored. Here, we delve into the multifaceted interactions between structured physical activity and the GM, emphasizing the role of exercise-induced stressors in shaping microbial composition and function. Unique to our review, we discuss the acute effects of different forms of exercise-induced stress on the GM and explore how these responses may influence long-term adaptability, stability, and resilience. Furthermore, we address critical junctures in microbial dynamics leading to shifts between different stable states. Finally, we explore the implications of host-controlled factors such as diet, exercise training, and nutritional supplementation in modulating the microbial community in the gut to optimize athletic performance. We conclude that while the potential to harness the synergistic effects of exercise-induced stressors, dietary interventions, and microbial adaptations appears promising, current evidence remains preliminary, highlighting the need for additional targeted research to guide future strategies that manipulate the GM for optimal health and athletic performance.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":12.3,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12366553/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144834668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rubén Torres, Begoña Carrasco, Silvia Ayora, Juan C Alonso
{"title":"Hallmarks of DNA replication stress responses in Escherichia coli and Bacillus subtilis.","authors":"Rubén Torres, Begoña Carrasco, Silvia Ayora, Juan C Alonso","doi":"10.1093/femsre/fuaf041","DOIUrl":"10.1093/femsre/fuaf041","url":null,"abstract":"<p><p>Escherichia coli and Bacillus subtilis provide well-studied models for understanding how bacteria manage DNA replication stress (RS). These bacteria employ various strategies to detect and stabilize stalled replication forks (RFs), circumvent or bypass lesions, resolve replication-transcription conflicts (RTCs), and resume replication. While central features of responses to RS are broadly conserved, distinct mechanisms have evolved to adapt to their complex environments. In this review, we compare the RS sensors, regulators, and molecular players of these two phylogenetically distant bacteria. The differing roles of the RecA recombinase are used as the touchstone of the distinct strategies each bacterium employs to overcome RS, provided that the fork does not collapse. In E. coli, RecA mainly assembles at locations distal from replisomes, promotes global responses, and contributes to circumvent or bypass lesions. RecA assembles less frequently at stalled RFs, and its role in lesion skipping, fork remodeling, RTC resolution, and replication restart remains poorly defined. In contrast, in B. subtilis, RecA assembles at stalled forks, fine-tunes damage signaling, and, in concert with RecA-interacting proteins, may facilitate fork remodeling or lesion bypass, overcome RTCs, and contribute to replication restart.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":12.3,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144948040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Celia Segui-Perez, Marleen Y van Smoorenburg, Anna E Maranus, Teunis B H Geijtenbeek, Karin Strijbis
{"title":"Impact of bacterial vaginosis on sexually transmitted viral infections: a bacterial point of view.","authors":"Celia Segui-Perez, Marleen Y van Smoorenburg, Anna E Maranus, Teunis B H Geijtenbeek, Karin Strijbis","doi":"10.1093/femsre/fuaf039","DOIUrl":"10.1093/femsre/fuaf039","url":null,"abstract":"<p><p>Bacterial vaginosis (BV) is a complex polymicrobial vaginal infection that affects a large percentage of women during different stages of life including the reproductive age. In a healthy vaginal environment, the epithelium is colonized by protective Lactobacillus species that make up 90%-95% of the total vaginal microbiota. BV is characterized by a reduction of lactobacilli and a concurrent increase in diverse anaerobic bacteria, including Gardnerella vaginalis, Prevotella bivia, Hoylesella timonensis, and Fannyhessea vaginae. BV is associated with an increased risk of infertility, preterm birth, and a higher susceptibility to sexually transmitted infections (STIs), including Human Immunodeficiency Virus type-1 (HIV-1). This review examines the contribution of individual pathogenic bacteria to the development of BV and the resulting effects on susceptibility to STI. The impact of the different key bacterial virulence factors, such as secreted proteins, biofilm formation, and inflammatory potential on subsequent viral infection are discussed. While antibiotics are commonly prescribed to treat BV, recurrence rates are high, and antimicrobial resistance among BV-associated bacteria is increasingly reported. Understanding the mechanisms underlying BV and the impact of specific bacteria and their virulence factors on viral infections can improve preventive strategies and open up novel therapeutic applications.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":12.3,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12422016/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144948129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}