Elizabet Monteagudo-Cascales, Mario Cano-Muñoz, Roberta Genova, Juan J Cabrera, Miguel A Matilla, Tino Krell
{"title":"Thermal shift assay to identify ligands for bacterial sensor proteins.","authors":"Elizabet Monteagudo-Cascales, Mario Cano-Muñoz, Roberta Genova, Juan J Cabrera, Miguel A Matilla, Tino Krell","doi":"10.1093/femsre/fuaf033","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria sense and respond to changing environmental conditions using a diverse range of receptors. Currently, the signals recognised by most receptors remain unknown, thereby limiting our understanding of their function. Since its introduction a decade ago, ligand screening by the thermal-shift assay has identified the signal molecules recognised by numerous receptors, solute-binding proteins, and transcriptional regulators. This progress is summarised in this review. Signal identification is facilitated by the fact that ligand-binding domains can be generated as individual soluble proteins that retain the signal-binding capabilities of the full-length proteins. Various issues relevant to the reliability of the thermal shift assay are discussed, including false-positive and false-negative results, the value of a protein pH screen prior to ligand screening, and the need to verify results with methods for the direct study of ligand binding, such as isothermal titration calorimetry. This review was inspired by the XVIII conference on Bacterial Locomotion and Signal Transduction (Cancun, January 2025), where several notable advances were reported based on the application of the thermal shift assay.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":12.3000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsre/fuaf033","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacteria sense and respond to changing environmental conditions using a diverse range of receptors. Currently, the signals recognised by most receptors remain unknown, thereby limiting our understanding of their function. Since its introduction a decade ago, ligand screening by the thermal-shift assay has identified the signal molecules recognised by numerous receptors, solute-binding proteins, and transcriptional regulators. This progress is summarised in this review. Signal identification is facilitated by the fact that ligand-binding domains can be generated as individual soluble proteins that retain the signal-binding capabilities of the full-length proteins. Various issues relevant to the reliability of the thermal shift assay are discussed, including false-positive and false-negative results, the value of a protein pH screen prior to ligand screening, and the need to verify results with methods for the direct study of ligand binding, such as isothermal titration calorimetry. This review was inspired by the XVIII conference on Bacterial Locomotion and Signal Transduction (Cancun, January 2025), where several notable advances were reported based on the application of the thermal shift assay.
期刊介绍:
Title: FEMS Microbiology Reviews
Journal Focus:
Publishes reviews covering all aspects of microbiology not recently surveyed
Reviews topics of current interest
Provides comprehensive, critical, and authoritative coverage
Offers new perspectives and critical, detailed discussions of significant trends
May contain speculative and selective elements
Aimed at both specialists and general readers
Reviews should be framed within the context of general microbiology and biology
Submission Criteria:
Manuscripts should not be unevaluated compilations of literature
Lectures delivered at symposia must review the related field to be acceptable