细菌渗透保护剂——在盐水条件下生存的一种方法和潜在的作物盟友。

IF 10.1 2区 生物学 Q1 MICROBIOLOGY
Aleksandra Goszcz, Karolina Furtak, Robert Stasiuk, Joanna Wójtowicz, Marcin Musiałowski, Michela Schiavon, Klaudia Dębiec-Andrzejewska
{"title":"细菌渗透保护剂——在盐水条件下生存的一种方法和潜在的作物盟友。","authors":"Aleksandra Goszcz, Karolina Furtak, Robert Stasiuk, Joanna Wójtowicz, Marcin Musiałowski, Michela Schiavon, Klaudia Dębiec-Andrzejewska","doi":"10.1093/femsre/fuaf020","DOIUrl":null,"url":null,"abstract":"<p><p>Soil salinization, affecting 6.5% of arable land, deteriorates soil properties, reduces microbiota activity, hinders plant growth, and accelerates soil erosion. Excessive salt induces physiological drought and toxicity stress in plants, causing chlorosis, ion imbalances, and enzyme disruptions. This paper discusses microorganisms' resistance mechanisms, plant responses to salt stress and summarizes current knowledge on bacterial osmoprotectants and their functions. It also reviews emerging agrobiotechnological strategies using microbial osmoprotectants to remediate salinized soils and enhance plant growth and productivity under salt stress. Osmoprotectants stabilize proteins, buffer redox potential, and retain water, thus alleviating osmotic stress and promoting bacteria and plants growth. Their application improves soil properties by enhancing aggregate formation, water permeability, moisture content, cation exchange capacity, and ion availability. Despite extensive literature on the function of osmoprotectants, the knowledge about their role in soil environments and agrobiotechnology applications remains limited. This paper indicates proposed research perspectives, including discovering new osmoprotectants, their correlation with soil fertilization, interactions with the soil microbiome, and plant responses. It also identifies significant knowledge gaps in these areas, highlighting the need for further studies to consolidate existing data and assess the potential of this approach to enhance soil health and crop productivity in saline environments.</p>","PeriodicalId":12201,"journal":{"name":"FEMS microbiology reviews","volume":" ","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacterial osmoprotectants - a way to survive in saline conditions and potential crop allies.\",\"authors\":\"Aleksandra Goszcz, Karolina Furtak, Robert Stasiuk, Joanna Wójtowicz, Marcin Musiałowski, Michela Schiavon, Klaudia Dębiec-Andrzejewska\",\"doi\":\"10.1093/femsre/fuaf020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soil salinization, affecting 6.5% of arable land, deteriorates soil properties, reduces microbiota activity, hinders plant growth, and accelerates soil erosion. Excessive salt induces physiological drought and toxicity stress in plants, causing chlorosis, ion imbalances, and enzyme disruptions. This paper discusses microorganisms' resistance mechanisms, plant responses to salt stress and summarizes current knowledge on bacterial osmoprotectants and their functions. It also reviews emerging agrobiotechnological strategies using microbial osmoprotectants to remediate salinized soils and enhance plant growth and productivity under salt stress. Osmoprotectants stabilize proteins, buffer redox potential, and retain water, thus alleviating osmotic stress and promoting bacteria and plants growth. Their application improves soil properties by enhancing aggregate formation, water permeability, moisture content, cation exchange capacity, and ion availability. Despite extensive literature on the function of osmoprotectants, the knowledge about their role in soil environments and agrobiotechnology applications remains limited. This paper indicates proposed research perspectives, including discovering new osmoprotectants, their correlation with soil fertilization, interactions with the soil microbiome, and plant responses. It also identifies significant knowledge gaps in these areas, highlighting the need for further studies to consolidate existing data and assess the potential of this approach to enhance soil health and crop productivity in saline environments.</p>\",\"PeriodicalId\":12201,\"journal\":{\"name\":\"FEMS microbiology reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsre/fuaf020\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsre/fuaf020","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

土壤盐渍化影响6.5%的耕地,使土壤性质恶化,减少微生物群活动,阻碍植物生长,加速土壤侵蚀。过量的盐会引起植物的生理干旱和毒性胁迫,导致黄化、离子失衡和酶破坏。本文对微生物的抗性机制、植物对盐胁迫的反应进行了综述,并对细菌渗透保护剂及其功能的最新研究进展进行了综述。它还回顾了利用微生物渗透保护剂修复盐碱化土壤和提高盐胁迫下植物生长和生产力的新兴农业生物技术战略。渗透保护剂稳定蛋白质,缓冲氧化还原电位,保持水分,从而减轻渗透胁迫,促进细菌和植物生长。它们的应用通过提高团聚体形成、透水性、水分含量、阳离子交换能力和离子有效性来改善土壤性质。尽管有大量关于渗透保护剂功能的文献,但关于它们在土壤环境和农业生物技术应用中的作用的知识仍然有限。本文提出了新的研究方向,包括发现新的渗透保护剂,它们与土壤施肥的关系,与土壤微生物群的相互作用,以及植物的反应。报告还指出了这些领域的重大知识差距,强调需要进一步研究以巩固现有数据,并评估这种方法在盐碱化环境中提高土壤健康和作物生产力的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bacterial osmoprotectants - a way to survive in saline conditions and potential crop allies.

Soil salinization, affecting 6.5% of arable land, deteriorates soil properties, reduces microbiota activity, hinders plant growth, and accelerates soil erosion. Excessive salt induces physiological drought and toxicity stress in plants, causing chlorosis, ion imbalances, and enzyme disruptions. This paper discusses microorganisms' resistance mechanisms, plant responses to salt stress and summarizes current knowledge on bacterial osmoprotectants and their functions. It also reviews emerging agrobiotechnological strategies using microbial osmoprotectants to remediate salinized soils and enhance plant growth and productivity under salt stress. Osmoprotectants stabilize proteins, buffer redox potential, and retain water, thus alleviating osmotic stress and promoting bacteria and plants growth. Their application improves soil properties by enhancing aggregate formation, water permeability, moisture content, cation exchange capacity, and ion availability. Despite extensive literature on the function of osmoprotectants, the knowledge about their role in soil environments and agrobiotechnology applications remains limited. This paper indicates proposed research perspectives, including discovering new osmoprotectants, their correlation with soil fertilization, interactions with the soil microbiome, and plant responses. It also identifies significant knowledge gaps in these areas, highlighting the need for further studies to consolidate existing data and assess the potential of this approach to enhance soil health and crop productivity in saline environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS microbiology reviews
FEMS microbiology reviews 生物-微生物学
CiteScore
17.50
自引率
0.90%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Title: FEMS Microbiology Reviews Journal Focus: Publishes reviews covering all aspects of microbiology not recently surveyed Reviews topics of current interest Provides comprehensive, critical, and authoritative coverage Offers new perspectives and critical, detailed discussions of significant trends May contain speculative and selective elements Aimed at both specialists and general readers Reviews should be framed within the context of general microbiology and biology Submission Criteria: Manuscripts should not be unevaluated compilations of literature Lectures delivered at symposia must review the related field to be acceptable
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信