{"title":"Wildfire and Its Impact on the Ecosystem in Guizhou Province","authors":"Hua Liu, Xuefei Zhou","doi":"10.1002/fam.3257","DOIUrl":"https://doi.org/10.1002/fam.3257","url":null,"abstract":"<div>\u0000 \u0000 <p>In February 2024, a total of 221 recorded excess wildfires occurred throughout Guizhou Province. The atypical weather conditions attributed to climate change, seasonal drought during the non-monsoon period, and human activities associated with the Spring Festival are identified as the primary factors contributing to this period of extensive wildfires. To facilitate a comprehensive assessment of the local ecosystem, analyses were conducted on precipitation, temperature, air quality index records, and water quality monitoring of downstream lakes and rivers. The early onset of the rainy season in April exacerbated soil erosion in Guizhou Province, where 81% of the terrain is mountainous. The repercussions of the excess wildfires on the downstream surface water ecosystem may persist for several months. The findings revealed significant differences in biomass accumulation and response times between rivers and lakes. A more thorough understanding of the impacts of wildfires on water and soil is essential for the formulation of effective recovery policies aimed at safeguarding downstream water resources.</p>\u0000 </div>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 5","pages":"550-558"},"PeriodicalIF":2.4,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144751391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical simulation study on shaft plug-holing height during natural smoke evacuation in deep buried tunnels","authors":"Liu Bin, Mao Jun, Jiang Xiangyang, Xi Yanhong","doi":"10.1002/fam.3254","DOIUrl":"https://doi.org/10.1002/fam.3254","url":null,"abstract":"<p>In this paper, we investigate the plug-holing phenomenon under the influence of natural smoke venting in deeply buried tunnel shafts using a fire dynamics simulator based on a large eddy simulation model. Additionally, we discuss the effects of heat release rate and shaft height. The results indicate that the temperature distribution of the smoke upstream of the fire remains consistent when the height of the shaft does not exceed 20 m. Once the shaft height reaches 50 m, the temperature of the smoke upstream of the fire decreases with the increase in shaft height. Simultaneously, the smoke downstream of the fire can be completely discharged through the shaft. As the shaft height increases in the deeply buried tunnel, the degree of plug-holing increases, leading to reduced smoke evacuation efficiency. This phenomenon is caused by the horizontal inertia force and vertical thermal buoyancy of the smoke below the shaft. The critical plugging phenomenon occurs when <i>Ri</i> = 2.72, as determined through force analysis of the smoke. Subsequently, we analyze the mechanism by which shaft height and heat release rate influence plug hole height and establish a quantitative expression equation for plug-holing height.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 2","pages":"162-172"},"PeriodicalIF":2.0,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143447150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wildland Urban Interface Codes in the USA: Comparison Between the Codes From the International Code Council and the State of California","authors":"Marcelo M. Hirschler","doi":"10.1002/fam.3255","DOIUrl":"https://doi.org/10.1002/fam.3255","url":null,"abstract":"<div>\u0000 \u0000 <p>Two organizations in the United States have developed codes to protect against the hazards associated with wildfires: the International Code Council (ICC; a private not-for-profit organization) and the state of California. Both codes contain strict requirements that, when put into effect, do significantly improve fire safety. The ICC code (IWUIC) has been adopted (either as issued or with amendments) by several states in the USA while the California code (CA Chapter 7A) applies only in that state. There are many similarities between both sets of codes but there are also some clear differences. The most important difference is that CA Chapter 7A allows wood that has not been treated with fire retardants (untreated wood) to be used on decks and walls, while the IWUIC requires the use of materials with improved fire performance for those applications. On the other hand, there are also requirements in CA Chapter 7A that are more conducive to fire safety than the equivalent ones in the IWUIC. One example is the fact that CA Chapter 7A does not permit the use of coated wood materials, in view of the act that all wildland applications involve exterior use and that coatings on wood materials have been shown to be susceptible to suffer fire performance degradation when exposed to weather; IWUIC is silent on that issue, meaning that the use of coated wood materials is not prohibited. The two codes (in the USA only) will be compared and contrasted in this work with respect to delivering improved fire safety.</p>\u0000 </div>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 5","pages":"824-834"},"PeriodicalIF":2.4,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144751280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Baochai Li, Huijuan Sun, Li Zhang, Xiaoya Zhao, Aznizam Abu Bakar, Zurina Mohamad
{"title":"Flame-Retarded Poly (Lactic Acid) Containing Phosphating Chitosan","authors":"Baochai Li, Huijuan Sun, Li Zhang, Xiaoya Zhao, Aznizam Abu Bakar, Zurina Mohamad","doi":"10.1002/fam.3256","DOIUrl":"https://doi.org/10.1002/fam.3256","url":null,"abstract":"<div>\u0000 \u0000 <p>Poly (lactic acid) (PLA) is a promising thermoplastic aliphatic polyester to replace petroleum-based polymers in many fields. However, its flammability has limited its application in areas where fire safety is crucial. Chitosan (CS) is a type of natural alkaline polysaccharide with abundant content and good biocompatibility. In this study, a bio-based flame-retardant phosphating chitosan (PCS) was prepared and the effects of PCS on the flammability, mechanical and thermal properties of PLA were evaluated. The limiting oxygen index (LOI) of PLA/PCS blend containing 9 wt% PCS reached 28.9% which was relatively higher than LOI of pure PLA of 20% and passed UL-94 V-0 rating. PCS accelerated the carbonization of PLA matrix, and increased the char residue at 800°C. The combustion process was further investigated by cone calorimeter test, and the peak heat release rate and total heat release were significantly decreased. X-ray photoelectron spectrometer and thermogravimetric-infrared analysis were used to analyze the composition of char residue and pyrolysis products, which further confirmed that the flame-retardant mechanism of PCS was the combination of condensed phase and gas phase. However, the mechanical properties of PLA/PCS blend inevitably decreased with increasing of PCS content.</p>\u0000 </div>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 2","pages":"173-183"},"PeriodicalIF":2.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143447074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kira Piechnik, Lukas Heydick, Anja Hofmann, Andrea Klippel
{"title":"Comprehensive laboratory study on smoke gases during the thermal oxidative decomposition of forest and vegetation fuels","authors":"Kira Piechnik, Lukas Heydick, Anja Hofmann, Andrea Klippel","doi":"10.1002/fam.3253","DOIUrl":"https://doi.org/10.1002/fam.3253","url":null,"abstract":"<p>This study investigates the composition of smoke gases in forest and vegetation samples to draw conclusions about the actual smoke gas composition during wildfires. The focus is particularly on regions with extensive pine forests, like in Eastern Germany. The relevance of smoke gases is well illustrated by the example of wildfires in Québec, influencing air quality in New York, in 2023. By employing a modified DIN tube furnace, a bench-scale test set-up, the research emphasizes the examination of smoke composition from tree species and ground cover, prioritizing gases while disregarding particles. Key smoke gases are identified as CO, CO<sub>2</sub>, SO<sub>2</sub>, HCN, C<sub>3</sub>H<sub>4</sub>O (acrolein) and CH<sub>2</sub>O (formaldehyde) and their concentrations are compared with Acute Exposure Guideline Levels (AEGL) limits. Acknowledging the limitations of AEGL usage and the problem with direct quantitative comparison of toxicant concentrations (cf. ISO 29903-1:2020), the study highlights variations in smoke composition across different samples. The results of the studies reveal a significant disparity in CO concentration between dry and fresh pine needles. Frequently, the AEGLs of key gases are exceeded significantly. The elemental analysis of the barks indicates distinct differences in composition, reflecting in the concentrations of smoke gases. The ratio of 1 mole of substance turnover to the identified key components will be used to determine input parameters for the subsequent numerical simulation.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 5","pages":"599-610"},"PeriodicalIF":2.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fam.3253","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144751641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Review of the NRC Canada studies on fire resistance of floor assemblies: Results, design guidelines and research gaps","authors":"Linbo Zhang, Mohamed A. Sultan","doi":"10.1002/fam.3244","DOIUrl":"https://doi.org/10.1002/fam.3244","url":null,"abstract":"<p>The National Research Council Canada conducted two major fire resistance studies on floor assemblies over the past two decades. Despite the publication of the experimental results, there is a lack of suggested guidelines for design practitioners and gaps for future research. Thus, this paper comprehensively reviews the fire resistance results of 85 full-scale floor tests, suggests design guidelines, and identifies research gaps. These efforts aim to enhance the understanding and support the potential improvement of the fire performance of floor assemblies. The review of the results covers the impact of various design parameters on the fire resistance of floor assemblies, such as framing type and spacing, insulation type, subfloor configuration, resilient channel spacing, number of gypsum board layers, and screw spacing from the board edge. Although the interaction of these factors is complex, some of them play significant roles in determining the overall fire resistance of floor assemblies. For instance, rock and cellulose insulation outperformed glass fibre, a wider resilient channel spacing lowered fire resistance, whilst an increased distance of screws from the board edge improved the fire resistance. More importantly, detailed explanations are provided for the influences these parameters exert on fire resistance. Following this detailed examination of the results, design guidelines are provided for practitioners' consideration. A comparison is made between the experimental results and predictions from the component additive methods in the Canadian and Euro Codes, demonstrating that both methods yield conservative results. Finally, this paper concludes by identifying research gaps and providing recommendations for future investigations, including the necessity of experimental studies on floor assemblies with new design configurations and the promising role of machine learning in fire resistance evaluation.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 1","pages":"40-58"},"PeriodicalIF":2.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143114783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Courtney Devine, Natalia Flores-Quiroz, Richard Walls, Carlo Kuhn
{"title":"Fire parameters of recycled plastic pellets","authors":"Courtney Devine, Natalia Flores-Quiroz, Richard Walls, Carlo Kuhn","doi":"10.1002/fam.3248","DOIUrl":"https://doi.org/10.1002/fam.3248","url":null,"abstract":"<p>During the recycling process, waste plastic undergoes various processes that change its geometry. The thermal properties and fire behaviour of plastic in different geometries has not been widely studied. This paper aims to determine critical thermal properties of plastic pellets made of recycled plastic. For this paper, cone calorimeter tests of various volumes of recycled plastic pellets of low- and high-density polyethylene and polypropylene were conducted. During these tests, the heat release rate (HRR), mass loss rate and time-to-ignition were measured, thereafter the heat of combustion (HOC) was calculated. A calibration of suitable time-to-ignition equations is carried out. The average HRR is between 353 and 581 kW/m<sup>2</sup> with an external heat flux of 50 kW/m<sup>2</sup>. The measured time-to-ignition values ranged between 27 s at 50 kW/m<sup>2</sup> and just more than 90 s at 25 kW/m<sup>2</sup>. Values obtained analytically from the thermally thin time-to-ignition equations for these materials describe ignition well, which appears to be due to the particulate nature of the samples. The HOC (40–41 MJ/kg) shows good agreement with the HOC for virgin plastic found in literature. These properties can be used as a basis for material characterisation, and further testing will be done before using this as simulation inputs to determine how bulk stored plastic pellets will behave in the event of a fire.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 2","pages":"127-137"},"PeriodicalIF":2.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fam.3248","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143446678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kinetic analysis on low-temperature oxidation of wood pellets by isothermal microcalorimetry","authors":"Can Yao, Changdong Sheng","doi":"10.1002/fam.3252","DOIUrl":"https://doi.org/10.1002/fam.3252","url":null,"abstract":"<p>Low-temperature chemical oxidation is the major driver of self-heating during storage of wood pellets and its kinetics is essential to describe the heat evolution. In the present work, isothermal microcalorimetry was used to characterize heat generation behavior of three types of wood pellets (pine, fir, and redwood pellets) at 30–70°C. The obtained data were employed to derive the kinetics of low-temperature oxidation by the peak power, iso-conversional method, and non-steady analysis. The consistency and applicability of the kinetics derived by the three methods were evaluated. Kinetic parameters determined by the peak power method were observed to match those from the iso-conversional method at lower conversions of the oxidation for heat generation. The kinetics derived by the iso-conversional method indicated the oxidation reactivity generally decreasing and activation energy increasing with the conversion because of O<sub>2</sub> consumption and reaction mechanism changing. With the impact of O<sub>2</sub> consumption considered separately, the kinetics from the non-steady analysis is capable of describing the evolution of heat power with the conversion and also consistent with that from the peak power method in describing intrinsic reactivity of pellet materials. The kinetics from the peak power and iso-conversional methods lump the impact of O<sub>2</sub> concentration with the reaction reactivity, suggesting their applications requiring additional models for connecting with O<sub>2</sub> consumption.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 1","pages":"116-124"},"PeriodicalIF":2.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143112000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdelmoutaleb Noumeur, Ruggiero Lovreglio, Mohamad Syazarudin Md Said, Mohd Rafee Baharudin, Hamdan Mohamed Yusoff, Mohd Zahirasri Mohd Tohir
{"title":"A study of staff pre-evacuation behaviors in a Malaysian hotel","authors":"Abdelmoutaleb Noumeur, Ruggiero Lovreglio, Mohamad Syazarudin Md Said, Mohd Rafee Baharudin, Hamdan Mohamed Yusoff, Mohd Zahirasri Mohd Tohir","doi":"10.1002/fam.3250","DOIUrl":"https://doi.org/10.1002/fam.3250","url":null,"abstract":"<p>Simulating fire and evacuation scenarios is crucial for engineers to assess building safety during fire incidents. Accurate simulations require data on occupants' behaviors, particularly during the pre-evacuation phase as these decisions significantly impact evacuation duration. Gathering comprehensive data from diverse regions while considering cultural and regional variations is necessary to understand how occupants' behavior is influenced. Thus, this study focuses on examining the behavior of Malaysian hotel staff during unannounced fire drill to gain insights into factors affecting their behavior during pre-evacuation stage, such as fire experience, fire alarm, drill participation, fire training, and awareness. The study categorizes the actions performed by the hotel staff into sequences and analyses them based on influencing factors. The findings indicate that instead of immediately evacuating in response to emergency notification, the hotel staff engage in various actions. Most staff members initially investigate or ignore the emergency, resulting in longer pre-evacuation times. Moreover, the results suggest that previous drill participation and high awareness levels contribute to shorter pre-evacuation times. Conversely, previous fire experience, fire training, and fire alarm familiarity have no effect on pre-evacuation time.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 2","pages":"138-161"},"PeriodicalIF":2.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fam.3250","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143446980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Defining a maximum heat release rate probability distribution function for design fires in sprinkler-protected residential buildings","authors":"Charlie Hopkin","doi":"10.1002/fam.3251","DOIUrl":"https://doi.org/10.1002/fam.3251","url":null,"abstract":"<p>In fire safety engineering analysis of sprinkler-protected residential buildings, the maximum heat release rate is a key parameter requiring consideration. Several documents provide advice for estimating the heat release rate of a sprinkler-controlled fire, with a prevailing suggestion that it is fixed upon activation of the first sprinkler. When carrying out deterministic analysis, this requires the engineer to assume fixed fire parameters and consider that sprinklers limit fire growth. To explore these assumptions, the study uses three deterministic models to estimate a sprinkler-controlled maximum heat release rate for a representative apartment layout. The models include Alpert's correlation, a B-RISK zone model and a computational fluid dynamics model in the Fire Dynamics Simulator. These deterministic models are compared to a probabilistic model in B-RISK, where Monte Carlo simulations are used to generate a range of maximum heat release rates from distribution functions for fire and sprinkler properties. An output distribution function is generated with a mean of 296.6 kW and a standard deviation of 503.8 kW, with a lognormal distribution (μ = 5.014, σ = 1.165) estimated as a best-fit. The deterministic models are estimated to sit in the 92–98 percentile range of this function, indicating that common deterministic assumptions are reasonably conservative. The article concludes with suggesting that, for deterministic analysis, a percentile between the 80th and 99th (340–2640 kW) could be qualitatively selected based on the design objectives, building situation and relative consequence of a fire. Further research is needed to establish guidelines for selecting appropriate percentiles across various building scenarios.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 1","pages":"102-115"},"PeriodicalIF":2.0,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fam.3251","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143120235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}