FibersPub Date : 2023-07-03DOI: 10.3390/fib11070058
Carlos J. Medina-Martinez, L. C. Sandoval Herazo, S. Zamora-Castro, R. Vivar-Ocampo, D. Reyes-González
{"title":"Use of Sawdust Fibers for Soil Reinforcement: A Review","authors":"Carlos J. Medina-Martinez, L. C. Sandoval Herazo, S. Zamora-Castro, R. Vivar-Ocampo, D. Reyes-González","doi":"10.3390/fib11070058","DOIUrl":"https://doi.org/10.3390/fib11070058","url":null,"abstract":"A frequent problem in geotechnics is soils with inadequate physical–mechanical properties to withstand construction work, incurring cost overruns caused by their engineering improvement. The need to improve the engineering properties of soils is not recent. The most common current alternatives are binders such as cement and lime. The climate change observed in recent decades and the uncontrolled emission of greenhouse gases have motivated geotechnical and geoenvironmental researchers to seek mechanisms for soil reinforcement from a more sustainable and environmentally friendly approach by proposing the use of recycled and waste materials. An alternative is natural fibers, which can be obtained as waste from many agro-industrial processes, due to their high availability and low cost. Sawdust, as a by-product of wood processing, has a rough texture that can generate high friction between the fiber and the matrix of the soils, leading to a significant increase in its shearing strength and bearing capacity. This concept of improving the properties of soils using natural fibers distributed randomly is inspired by the natural phenomenon of grass and/or plants that, when growing on a slope, can effectively stabilize the said slope.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45835014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FibersPub Date : 2023-06-26DOI: 10.3390/fib11070057
E. Anashkina, A. Andrianov
{"title":"Numerical Study of Efficient Tm-Doped Zinc-Tellurite Fiber Lasers at 2300 nm","authors":"E. Anashkina, A. Andrianov","doi":"10.3390/fib11070057","DOIUrl":"https://doi.org/10.3390/fib11070057","url":null,"abstract":"Fiber laser sources operating near 2300 nm in the atmospheric transparency window are interesting for different applications, such as remote sensing, lidars, and others. The use of Tm-doped fiber lasers based on tellurite fibers is highly promising. We propose and theoretically study a highly efficient diode-pumped Tm-doped zinc-tellurite fiber laser operating at two cascade radiative transitions at 1960 nm and 2300 nm, with additional energy transfer between these laser waves due to the Raman interaction. We demonstrate numerically that a dramatic increase in the slope efficiency up to 57% for the laser wave at 2300 nm, exceeding the Stokes limit by 22% relative to the pump at 793 nm, can be obtained with optimized parameters thanks to Raman energy transfer from the laser wave at 1960 nm to the wave at 2300 nm.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42899602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FibersPub Date : 2023-06-19DOI: 10.3390/fib11060056
E. Sashina, O. I. Yakovleva
{"title":"The Current State and Prospects of Recycling Silk Industry Waste into Nonwoven Materials","authors":"E. Sashina, O. I. Yakovleva","doi":"10.3390/fib11060056","DOIUrl":"https://doi.org/10.3390/fib11060056","url":null,"abstract":"Natural fibres are the preferred options for garment, technical and medical textiles, nonwovens and composites. Their sustainability is a considerable advantage, though the nature of silk production and processing involves a large amount of waste. The present review explores the current issues of recycling silk waste into nonwovens for various purposes. The article proposes obtaining nonwovens from short fibres using electrospinning of fibroin solutions in volatile solvents. Longer fibres are proposed to be processed into needle-punched nonwoven materials with a selection of an effective antistatic treatment.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42616450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FibersPub Date : 2023-06-16DOI: 10.3390/fib11060054
V. Shiryaev, A. Velmuzhov, T. Kotereva, E. A. Tyurina, M. Sukhanov, E. Karaksina
{"title":"Recent Achievements in Development of Chalcogenide Optical Fibers for Mid-IR Sensing","authors":"V. Shiryaev, A. Velmuzhov, T. Kotereva, E. A. Tyurina, M. Sukhanov, E. Karaksina","doi":"10.3390/fib11060054","DOIUrl":"https://doi.org/10.3390/fib11060054","url":null,"abstract":"Recent results of research of passive and active optical waveguides made of high-purity chalcogenide glasses for middle infrared fiberoptic evanescent wave spectroscopy of liquid and gaseous substances are presented. On the basis of selenide and telluride glass fibers, novel types of highly sensitive fiber probes are developed. On the basis of Pr(3+)- and Tb(3+)-doped Ga(In)-Ge-As-Se and Ga-Ge-Sb-Se glass fibers, the 4.2–6 μm wavelength radiation sources are created for all-fiber sensor systems. Successful testing of chalcogenide glass fiber sensors for the analysis of some liquid and gaseous mixtures was carried out.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48335664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FibersPub Date : 2023-06-15DOI: 10.3390/fib11060053
Athanasia K. Thomoglou, Martha A. Karabini, D. Achillopoulou, T. Rousakis, C. Chalioris
{"title":"Failure Mode Prediction of Unreinforced Masonry (URM) Walls Retrofitted with Cementitious Textile Reinforced Mortar (TRM)","authors":"Athanasia K. Thomoglou, Martha A. Karabini, D. Achillopoulou, T. Rousakis, C. Chalioris","doi":"10.3390/fib11060053","DOIUrl":"https://doi.org/10.3390/fib11060053","url":null,"abstract":"The brittle failure of unreinforced masonry (URM) walls when subjected to in-plane loads present low shear strength remains a critical issue. The investigation presented in this paper touches on the retrofitting of URM structures with textile-reinforced mortar (TRM), which enables shifting the shear failure mode from a brittle to a pseudo-ductile mode. Despite many guidelines for applying composite materials for retrofitting and predicting the performance of strengthened structures, the application of TRM systems in masonry walls is not extensively described. A thorough retrospect of the literature is presented, containing research results relating to different masonry walls, e.g., bricks, cement, and stone blocks strengthened with TRM jackets and subjected to diagonal compression loads. The critical issue of this study is the failure mode of the retrofitted masonry walls. Available prediction models are presented, and their predictions are compared to the experimental results based on their failure modes. The novelty of this study is the more accurate failure mode prediction of reinforced masonry with TRM and also of the shear strength with the proposed model, Thomoglou et al., 2020, at an optimal level compared to existing regulations and models. The novel prediction model estimates the shear failure mode of the strengthened wall while considering the contribution of all components, e.g., block, render mortar, strengthening textile, and cementitious matrix, by modifying the expressions of the Eurocode 8 provisions. The results have shown that the proposed model presents an optimum accuracy in predicting the failure mode of all different masonry walls strengthened with various TRM jackets and could be taken into account in the regulations for reliable forecasting.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45482340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FibersPub Date : 2023-06-13DOI: 10.3390/fib11060052
A. Rybaltovsky, M. Yashkov, A. Abramov, A. Umnikov, M. Likhachev, D. Lipatov
{"title":"Optimization of the Core Compound for Ytterbium Ultra-Short Cavity Fiber Lasers","authors":"A. Rybaltovsky, M. Yashkov, A. Abramov, A. Umnikov, M. Likhachev, D. Lipatov","doi":"10.3390/fib11060052","DOIUrl":"https://doi.org/10.3390/fib11060052","url":null,"abstract":"Highly ytterbium-, aluminum- and phosphorus-co-doped silica fibers with low optical losses were fabricated by the MCVD method, utilizing an all-gas-phase deposition technique. Optical and laser properties of the active fibers with a phosphosilicate and aluminophosphosilicate glass cores doped with 1.85 mol% and 1.27 mol% Yb2O3 were thoroughly investigated. With the help of hydrogen loading, it was possible to induce highly reflective Bragg grating in both fiber samples using the standard phase-mask technique and 193 nm-UV laser irradiation. The ultra-short (less than 2 cm long) Fabry–Perot laser cavities were fabricated by inscribing two fiber Bragg gratings (highly and partially reflective FBGs) directly in the core of the fiber samples. The highest pump-to-signal conversion efficiency of 47% was demonstrated in such laser configuration using phosphosilicate fiber. The reasons for the low efficiency of aluminophosphosilicate fiber are discussed.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49474987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FibersPub Date : 2023-06-12DOI: 10.3390/fib11060051
F. Barkov, A. Krivosheev, Y. Konstantinov, A. R. Davydov
{"title":"A Refinement of Backward Correlation Technique for Precise Brillouin Frequency Shift Extraction","authors":"F. Barkov, A. Krivosheev, Y. Konstantinov, A. R. Davydov","doi":"10.3390/fib11060051","DOIUrl":"https://doi.org/10.3390/fib11060051","url":null,"abstract":"A new method for extracting the Brillouin frequency shift (BFS) from the Brillouin gain spectrum (BGS), the modified backward correlation method (MBWC), is presented. The possibilities of using MBWC, and MBWC in combination with the Lorentzian curve fitting (LCF) based on Levenberg–Marquardt (LM) method, are studied. The effectiveness of the new method, and its combination with LM, has been demonstrated for processing spectra with a low signal-to-noise ratio (SNR). The experiments, which were in good agreement with the performed simulation, showed that at SNR = 0 dB, the combined (MBWC + LM) method provided the BFS extraction error of less than 4 MHz, while the state-of-the-art LM algorithm extracted it with the error greater than 4.5 MHz. The advantage of correlation methods becomes more significant with the decreasing SNR: at SNR = −2 dB, the LM’s error is 14.3 MHz, and that of the combined one is 8.1 MHz.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43777700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FibersPub Date : 2023-06-01DOI: 10.3390/fib11060049
Fnu Asaduzzaman, S. Salmon
{"title":"Controllable Water-Triggered Degradation of PCL Solution-Blown Nanofibrous Webs Made Possible by Lipase Enzyme Entrapment","authors":"Fnu Asaduzzaman, S. Salmon","doi":"10.3390/fib11060049","DOIUrl":"https://doi.org/10.3390/fib11060049","url":null,"abstract":"Polymers in nanofibrous forms offer new opportunities for achieving triggered polymer degradation, which is important for functional and environmental reasons. The polycaprolactone (PCL) nanofibrous nonwoven polymer webs developed in this work by solution blow spinning with entrapped enzymes were completely, rapidly and controllably degraded when triggered by exposure to water. Lipase (CALB) from Candida antarctica was successfully entrapped in the PCL webs via an enzyme-compatible water-in-oil emulsion in the PCL–chloroform spinning solution with added surfactant. Protein (enzyme) in the nanofibrous webs was detected by Fourier Transform Infrared Spectroscopy (FTIR), while time of flight-secondary ion mass spectroscopy (ToF-SIMS) and laser confocal microscopy indicated that enzymes were immobilized within solid fibers as well as within microbead structures distributed throughout the webs. Degradation studies of CALB-enzyme functionalized solution-blown nonwoven (EFSBN)-PCL webs at 40 °C or ambient temperature showed that EFSBN-PCL webs degraded rapidly when exposed to aqueous pH 8 buffer. Scanning electron microscopy (SEM) images of partially degraded webs showed that thinner fibers disappeared first, thus, controlling fiber dimensions could control degradation rates. Rapid degradation was attributed to the combination of nanofibrous web structure and the distribution of enzymes throughout the webs. CALB immobilized in the solid dry webs exhibited long storage stability at room temperature or when refrigerated, with around 60% catalytic activity being retained after 120 days compared to the initial activity. Dry storage stability at ambient conditions and rapid degradation upon exposure to water demonstrated that EFSBN-PCL could be used as fibers or binders in degradable textile or paper products, as components in packaging, for tissue engineering and for controlled-release drug or controlled-release industrial and consumer product applications.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47924786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FibersPub Date : 2023-05-24DOI: 10.3390/fib11060048
A. Kuznetsov, A. Wolf, Zh.E. Munkueva, A. Dostovalov, S. Babin
{"title":"Multimode Graded Index Fiber with Random Array of Bragg Gratings and Its Raman Lasing Properties","authors":"A. Kuznetsov, A. Wolf, Zh.E. Munkueva, A. Dostovalov, S. Babin","doi":"10.3390/fib11060048","DOIUrl":"https://doi.org/10.3390/fib11060048","url":null,"abstract":"Light propagation in multimode fibers is known to experience various nonlinear effects, which are being actively studied. One of the interesting effects is the brightness enhancement at the Raman conversion of the multimode beam in graded index (GRIN) fiber due to beam cleanup at Raman amplification and mode selective feedback in the Raman laser cavity based on fiber Bragg gratings (FBGs) with special transverse structure. It is also possible to explore random distributed feedback based on Rayleigh backscattering on natural refractive index fluctuations in GRIN fibers, but it is rather weak, requiring very high power multimode pumping for random lasing. Here, we report on the first realization of femtosecond pulse-inscribed arrays of weak randomly spaced FBGs in GRIN fibers and study Raman lasing at its direct pumping by highly multimode (M2~34) 940-nm laser diodes. The fabricated 1D–3D FBG arrays are used as a complex output mirror, together with the highly reflective input FBG in 1-km fiber. Above threshold pump power (~100 W), random lasing of the Stokes beam at 976 nm is obtained with output power exceeding 28 W at 174 W pumping. The beam quality parameter varies for different arrays, reaching M2~2 at the linewidth narrowing to 0.1–0.2 nm due to the interference effects, with the best characteristics for the 2D array.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48904844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FibersPub Date : 2023-05-22DOI: 10.3390/fib11050047
Faisal Abedin, E. DenHartog
{"title":"The Exothermic Effects of Textile Fibers during Changes in Environmental Humidity: A Comparison between ISO:16533 and Dynamic Hot Plate Test Method","authors":"Faisal Abedin, E. DenHartog","doi":"10.3390/fib11050047","DOIUrl":"https://doi.org/10.3390/fib11050047","url":null,"abstract":"The exothermic effects of high regain fiber types have been described before; yet, there have not been reliable tests to demonstrate these effects on the human body. Most test methods focus on steady-state measurements; therefore, these exothermic effects during changes in environmental humidity are typically not analyzed or quantified. We have conducted a set of fabric tests that shows the connection between the exothermic effect of water vapor uptake and its consequence for heat loss through the fabric in transient conditions. We have performed the ISO:16533 standard test, a dynamic hot plate test developed by Naylor to measure the exothermic property of the fabric, and dynamic regain tests to connect the dots between these tests and the water vapor uptake phenomenon. Although the ISO:16533 test method tends to show the temperature increase in fibers, it cannot differentiate between the hygroscopic fiber (wool, viscose, cotton) types (p > 0.001). In addition, sensor size and sample folding techniques could impact the temperature increase. On the other hand, the Naylor hot plate test showed a greater difference in heat release among the fiber types (wool showed 20% higher heat release than viscose, 50% more than cotton), although the relative humidity changes in the chamber take time, which might not reflect a step-wise change in humidity. So far, these test methods have proven to be the most reliable for determining the exothermic behavior of textile fiber. However, these test methods still have limitations and cannot simulate realistic environmental conditions considering an instantaneous change in the environment. This paper reflects the comparison between the two test methods and recommends directions to accurately address the theory of water vapor uptake under dynamic conditions.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48353533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}