Antimicrobial Properties of AgNP/TEMPO-Oxidized Cellulose Nanofiber/Chitosan Composite Fibers

IF 4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fibers Pub Date : 2023-08-14 DOI:10.3390/fib11080069
Duangkamol Dechojarassri, Kazuki Komatsu, A. Sawara, H. Tamura, T. Furuike
{"title":"Antimicrobial Properties of AgNP/TEMPO-Oxidized Cellulose Nanofiber/Chitosan Composite Fibers","authors":"Duangkamol Dechojarassri, Kazuki Komatsu, A. Sawara, H. Tamura, T. Furuike","doi":"10.3390/fib11080069","DOIUrl":null,"url":null,"abstract":"This study successfully synthesized functionalized silver nanoparticle/TEMPO-oxidized cellulose nanofiber/chitosan (AgNP/TOCN/CS) composite fibers. First, the TOCN/CS composite fibers were prepared through the wet-spinning technique, yielding Ag/TOCN/CS composite fibers after immersion in a 5 mM AgNO3 aqueous solution for 3 h, followed by washing with 100 mL of deionized water five times. Second, upon heat treatment without adding other reducing agents, TOCN reduced the Ag+ in the Ag/TOCN/CS composite fibers to AgNP/TOCN/CS composite fibers on the surface of the CS fibers. The fiber color changed from white to yellow-orange when the temperature changed from 100 to 170 °C. In addition, the results suggest that the heat treatment at 130 °C for 20 min was the optimal heat treatment condition. Meanwhile, soaking the fibers in 50 mM ascorbic acid for 1 min is the best condition for ascorbic acid reduction. The antibacterial test results showed that the AgNP/TOCN/CS composite fibers formed via ascorbic acid reduction exhibited better antibacterial activity against both Escherichia coli and Bacillus subtilis than those produced via heat treatment. In summary, AgNPs formed on the fiber surface of AgNP/TOCN/CS composite fibers and showed antibacterial activity, confirming the successful addition of antibacterial properties to TOCN/CS composite fibers.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11080069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study successfully synthesized functionalized silver nanoparticle/TEMPO-oxidized cellulose nanofiber/chitosan (AgNP/TOCN/CS) composite fibers. First, the TOCN/CS composite fibers were prepared through the wet-spinning technique, yielding Ag/TOCN/CS composite fibers after immersion in a 5 mM AgNO3 aqueous solution for 3 h, followed by washing with 100 mL of deionized water five times. Second, upon heat treatment without adding other reducing agents, TOCN reduced the Ag+ in the Ag/TOCN/CS composite fibers to AgNP/TOCN/CS composite fibers on the surface of the CS fibers. The fiber color changed from white to yellow-orange when the temperature changed from 100 to 170 °C. In addition, the results suggest that the heat treatment at 130 °C for 20 min was the optimal heat treatment condition. Meanwhile, soaking the fibers in 50 mM ascorbic acid for 1 min is the best condition for ascorbic acid reduction. The antibacterial test results showed that the AgNP/TOCN/CS composite fibers formed via ascorbic acid reduction exhibited better antibacterial activity against both Escherichia coli and Bacillus subtilis than those produced via heat treatment. In summary, AgNPs formed on the fiber surface of AgNP/TOCN/CS composite fibers and showed antibacterial activity, confirming the successful addition of antibacterial properties to TOCN/CS composite fibers.
AgNP/TEMPO氧化纤维素纳米纤维/壳聚糖复合纤维的抗菌性能
本研究成功合成了功能化银纳米粒子/TEMPO氧化纤维素纳米纤维/壳聚糖(AgNP/TOCN/CS)复合纤维。首先,通过湿法纺丝技术制备TOCN/CS复合纤维,在5mM AgNO3水溶液中浸泡3小时后,用100mL去离子水洗涤5次,得到Ag/TOCN/CS复合纤维。其次,在不添加其他还原剂的情况下进行热处理时,TOCN将Ag/TOCN/CS复合纤维中的Ag+还原为CS纤维表面的AgNP/TOCN/CS复合纤维。当温度从100°C变化到170°C时,纤维的颜色从白色变为黄橙色。此外,结果表明,在130°C下热处理20min是最佳的热处理条件。同时,将纤维在50mM抗坏血酸中浸泡1分钟是抗坏血酸还原的最佳条件。抗菌试验结果表明,通过抗坏血酸还原形成的AgNP/TOCN/CS复合纤维对大肠杆菌和枯草芽孢杆菌均表现出比通过热处理产生的纤维更好的抗菌活性。总之,AgNPs在AgNP/TOCN/CS复合纤维的纤维表面形成,并显示出抗菌活性,证实了TOCN/CS复合纤维成功地增加了抗菌性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fibers
Fibers Engineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍: Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信