Flexural Strength of Damaged RC Beams Repaired with Carbon Fiber-Reinforced Polymer (CFRP) Using Different Techniques

IF 4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fibers Pub Date : 2023-07-14 DOI:10.3390/fib11070061
Abbas Yahya Turki, M. Al-Farttoosi
{"title":"Flexural Strength of Damaged RC Beams Repaired with Carbon Fiber-Reinforced Polymer (CFRP) Using Different Techniques","authors":"Abbas Yahya Turki, M. Al-Farttoosi","doi":"10.3390/fib11070061","DOIUrl":null,"url":null,"abstract":"In this study, an experimental program was developed to investigate the flexural behavior of pre-damaged reinforced concrete (RC) beams that had been repaired and strengthened using carbon fiber-reinforced polymer (CFRP) laminates under a monotonic load. Two techniques were used: externally bonded reinforcement (EBR) and near-surface-mounted (NSM) reinforcement, to repair and strengthen the tested beams. The experimental program involved casting and testing nine simply supported RC rectangular beams; one beam was considered as the reference beam and did not undergo additional strengthening, and the remaining beams were strengthened using CFRP laminates. These eight beams were divided into two main groups for the purposes of strengthening: beams for which the EBR technique was used, and beams for which the NSM technique was used. The primary variables observed in the EBR and NSM groups included four damage percentages obtained according to the preload (20, 40, 60, and 80%) from the ultimate load carried by the reference beam. The experimental results show that decreasing the damage percentage leads to an increase in ultimate strength from about 3.6% to 17.2% for the beams repaired using the EBR technique and from 27.6% to 57% for the beams repaired using the NSM technique; additionally, the NSM method was more effective than the EBR method in terms of the flexural strength and mode of failure. However, using CFRP laminates enhances the flexure capacity of strengthened RC beams.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11070061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, an experimental program was developed to investigate the flexural behavior of pre-damaged reinforced concrete (RC) beams that had been repaired and strengthened using carbon fiber-reinforced polymer (CFRP) laminates under a monotonic load. Two techniques were used: externally bonded reinforcement (EBR) and near-surface-mounted (NSM) reinforcement, to repair and strengthen the tested beams. The experimental program involved casting and testing nine simply supported RC rectangular beams; one beam was considered as the reference beam and did not undergo additional strengthening, and the remaining beams were strengthened using CFRP laminates. These eight beams were divided into two main groups for the purposes of strengthening: beams for which the EBR technique was used, and beams for which the NSM technique was used. The primary variables observed in the EBR and NSM groups included four damage percentages obtained according to the preload (20, 40, 60, and 80%) from the ultimate load carried by the reference beam. The experimental results show that decreasing the damage percentage leads to an increase in ultimate strength from about 3.6% to 17.2% for the beams repaired using the EBR technique and from 27.6% to 57% for the beams repaired using the NSM technique; additionally, the NSM method was more effective than the EBR method in terms of the flexural strength and mode of failure. However, using CFRP laminates enhances the flexure capacity of strengthened RC beams.
碳纤维增强聚合物(CFRP)修复损伤RC梁的抗弯强度
在这项研究中,开发了一个实验程序来研究在单调荷载下使用碳纤维增强聚合物(CFRP)层压板修复和加强的预损伤钢筋混凝土(RC)梁的弯曲行为。使用了两种技术:外部粘结加固(EBR)和近表面安装(NSM)加固,以修复和加强测试梁。试验方案包括浇铸和测试9根简支RC矩形梁;其中一根梁作为参考梁,不进行额外加固,其余梁采用碳纤维布加固。为了加强目的,这8根梁被分为两组:使用EBR技术的梁,和使用NSM技术的梁。在EBR和NSM组中观察到的主要变量包括根据参考梁所承受的极限载荷的预载荷(20%、40%、60%和80%)获得的四种损伤百分比。试验结果表明,降低损伤百分比,EBR技术修复梁的极限强度从3.6%提高到17.2%,NSM技术修复梁的极限强度从27.6%提高到57%;此外,在抗弯强度和破坏模式方面,NSM方法比EBR方法更有效。然而,碳纤维布层合板的使用提高了钢筋混凝土加固梁的抗弯能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fibers
Fibers Engineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍: Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信