Keren Zhang, Kimberly Paul, Jonathan P. Jacobs, Myles G. Cockburn, Jeff M. Bronstein, Irish del Rosario, Beate Ritz
{"title":"Ambient long-term exposure to organophosphorus pesticides and the human gut microbiome: an observational study","authors":"Keren Zhang, Kimberly Paul, Jonathan P. Jacobs, Myles G. Cockburn, Jeff M. Bronstein, Irish del Rosario, Beate Ritz","doi":"10.1186/s12940-024-01078-y","DOIUrl":"https://doi.org/10.1186/s12940-024-01078-y","url":null,"abstract":"Organophosphorus pesticides (OP) have been associated with various human health conditions. Animal experiments and in-vitro models suggested that OP may also affect the gut microbiota. We examined associations between ambient chronic exposure to OP and gut microbial changes in humans. We recruited 190 participants from a community-based epidemiologic study of Parkinson’s disease living in a region known for heavy agricultural pesticide use in California. Of these, 61% of participants had Parkinson’s disease and their mean age was 72 years. Microbiome and predicted metagenome data were generated by 16S rRNA gene sequencing of fecal samples. Ambient long-term OP exposures were assessed using pesticide application records combined with residential addresses in a geographic information system. We examined gut microbiome differences due to OP exposures, specifically differences in microbial diversity based on the Shannon index and Bray–Curtis dissimilarities, and differential taxa abundance and predicted Metacyc pathway expression relying on regression models and adjusting for potential confounders. OP exposure was not associated with alpha or beta diversity of the gut microbiome. However, the predicted metagenome was sparser and less evenly expressed among those highly exposed to OP (p = 0.04). Additionally, we found that the abundance of two bacterial families, 22 genera, and the predicted expression of 34 Metacyc pathways were associated with long-term OP exposure. These pathways included perturbed processes related to cellular respiration, increased biosynthesis and degradation of compounds related to bacterial wall structure, increased biosynthesis of RNA/DNA precursors, and decreased synthesis of Vitamin B1 and B6. In support of previous animal studies and in-vitro findings, our results suggest that ambient chronic OP pesticide exposure alters gut microbiome composition and its predicted metabolism in humans.","PeriodicalId":11686,"journal":{"name":"Environmental Health","volume":"139 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"All-cause, cardiovascular disease and cancer mortality in the population of a large Italian area contaminated by perfluoroalkyl and polyfluoroalkyl substances (1980–2018)","authors":"Annibale Biggeri, Giorgia Stoppa, Laura Facciolo, Giuliano Fin, Silvia Mancini, Valerio Manno, Giada Minelli, Federica Zamagni, Michela Zamboni, Dolores Catelan, Lauro Bucchi","doi":"10.1186/s12940-024-01074-2","DOIUrl":"https://doi.org/10.1186/s12940-024-01074-2","url":null,"abstract":"Per- and polyfluoroalkyl substances (PFAS) are associated with many adverse health conditions. Among the main effects is carcinogenicity in humans, which deserves to be further clarified. An evident association has been reported for kidney cancer and testicular cancer. In 2013, a large episode of surface, ground and drinking water contamination with PFAS was uncovered in three provinces of the Veneto Region (northern Italy) involving 30 municipalities and a population of about 150,000. We report on the temporal evolution of all-cause mortality and selected cause-specific mortality by calendar period and birth cohort in the local population between 1980 and 2018. The Italian National Institute of Health pre-processed and made available anonymous data from the Italian National Institute of Statistics death certificate archives for residents of the provinces of Vicenza, Padua and Verona (males, n = 29,629; females, n = 29,518) who died between 1980 and 2018. Calendar period analysis was done by calculating standardised mortality ratios using the total population of the three provinces in the same calendar period as reference. The birth cohort analysis was performed using 20–84 years cumulative standardised mortality ratios. Exposure was defined as being resident in one of the 30 municipalities of the Red area, where the aqueduct supplying drinking water was fed by the contaminated groundwater. During the 34 years between 1985 (assumed as beginning date of water contamination) and 2018 (last year of availability of cause-specific mortality data), in the resident population of the Red area we observed 51,621 deaths vs. 47,731 expected (age- and sex-SMR: 108; 90% CI: 107–109). We found evidence of raised mortality from cardiovascular disease (in particular, heart diseases and ischemic heart disease) and malignant neoplastic diseases, including kidney cancer and testicular cancer. For the first time, an association of PFAS exposure with mortality from cardiovascular disease was formally demonstrated. The evidence regarding kidney cancer and testicular cancer is consistent with previously reported data.","PeriodicalId":11686,"journal":{"name":"Environmental Health","volume":"63 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erin L. Landguth, Jonathon Knudson, Jon Graham, Ava Orr, Emily A. Coyle, Paul Smith, Erin O. Semmens, Curtis Noonan
{"title":"Seasonal extreme temperatures and short-term fine particulate matter increases pediatric respiratory healthcare encounters in a sparsely populated region of the intermountain western United States","authors":"Erin L. Landguth, Jonathon Knudson, Jon Graham, Ava Orr, Emily A. Coyle, Paul Smith, Erin O. Semmens, Curtis Noonan","doi":"10.1186/s12940-024-01082-2","DOIUrl":"https://doi.org/10.1186/s12940-024-01082-2","url":null,"abstract":"Western Montana, USA, experiences complex air pollution patterns with predominant exposure sources from summer wildfire smoke and winter wood smoke. In addition, climate change related temperatures events are becoming more extreme and expected to contribute to increases in hospital admissions for a range of health outcomes. Evaluating while accounting for these exposures (air pollution and temperature) that often occur simultaneously and may act synergistically on health is becoming more important. We explored short-term exposure to air pollution on children’s respiratory health outcomes and how extreme temperature or seasonal period modify the risk of air pollution-associated healthcare events. The main outcome measure included individual-based address located respiratory-related healthcare visits for three categories: asthma, lower respiratory tract infections (LRTI), and upper respiratory tract infections (URTI) across western Montana for ages 0–17 from 2017–2020. We used a time-stratified, case-crossover analysis with distributed lag models to identify sensitive exposure windows of fine particulate matter (PM2.5) lagged from 0 (same-day) to 14 prior-days modified by temperature or season. For asthma, increases of 1 µg/m3 in PM2.5 exposure 7–13 days prior a healthcare visit date was associated with increased odds that were magnified during median to colder temperatures and winter periods. For LRTIs, 1 µg/m3 increases during 12 days of cumulative PM2.5 with peak exposure periods between 6–12 days before healthcare visit date was associated with elevated LRTI events, also heightened in median to colder temperatures but no seasonal effect was observed. For URTIs, 1 unit increases during 13 days of cumulative PM2.5 with peak exposure periods between 4–10 days prior event date was associated with greater risk for URTIs visits that were intensified during median to hotter temperatures and spring to summer periods. Delayed, short-term exposure increases of PM2.5 were associated with elevated odds of all three pediatric respiratory healthcare visit categories in a sparsely population area of the inter-Rocky Mountains, USA. PM2.5 in colder temperatures tended to increase instances of asthma and LRTIs, while PM2.5 during hotter periods increased URTIs.","PeriodicalId":11686,"journal":{"name":"Environmental Health","volume":"91 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Associations of per- and polyfluoroalkyl substances (PFAS) and their mixture with risk of rheumatoid arthritis in the U.S. adult population","authors":"Jian-Chao Qiao, Zhen-Hua Li, Yu-Bo Ma, Hui-Ya Ma, Meng-Yue Zhang, Xiu-Jun Zhang, Cheng-Yang Hu","doi":"10.1186/s12940-024-01073-3","DOIUrl":"https://doi.org/10.1186/s12940-024-01073-3","url":null,"abstract":"Per- and polyfluoroalkyl substances (PFAS) are known environmental contaminants with immunosuppressive properties. Their connection to rheumatoid arthritis (RA), a condition influenced by the immune system, is not well studied. This research explores the association between PFAS exposure and RA prevalence. This research utilized data from the NHANES, encompassing a sample of 10,496 adults from the 2003–2018 cycles, focusing on serum levels of several PFAS. The presence of RA was determined based on self-reports. This study used multivariable logistic regression to assess the relationship between individual PFAS and RA risk, adjusting for covariates to calculate odds ratios (ORs). The combined effects of PFAS mixtures were evaluated using BKMR, WQS regression, and quantile g-computation. Additionally, sex-specific associations were explored through stratified analysis. Higher serum PFOA (OR = 0.88, 95% CI: 0.79, 0.98), PFHxS (OR = 0.91, 95% CI: 0.83, 1.00), PFNA (OR = 0.87, 95% CI: 0.77, 0.98), and PFDA (OR = 0.89, 95% CI: 0.81, 0.99) concentration was related to lower odds of RA. Sex-specific analysis in single chemical models indicated the significant inverse associations were only evident in females. BKMR did not show an obvious pattern of RA estimates across PFAS mixture. The outcomes of sex-stratified quantile g-computation demonstrated that an increase in PFAS mixture was associated with a decreased odds of RA in females (OR: 0.76, 95% CI: 0.62, 0.92). We identified a significant interaction term of the WQS*sex in the 100 repeated hold out WQS analysis. Notably, a higher concentration of the PFAS mixture was significantly associated with reduced odds of RA in females (mean OR = 0.93, 95% CI: 0.88, 0.98). This study indicates potential sex-specific associations of exposure to various individual PFAS and their mixtures with RA. Notably, the observed inverse relationships were statistically significant in females but not in males. These findings contribute to the growing body of evidence indicating that PFAS may have immunosuppressive effects.","PeriodicalId":11686,"journal":{"name":"Environmental Health","volume":"8 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nerea Mourino, Zhuoya Zhang, Mónica Pérez-Ríos, Kimberly Yolton, Bruce P. Lanphear, Aimin Chen, Jessie P. Buckley, Heidi J. Kalkwarf, Kim M. Cecil, Joseph M. Braun
{"title":"Early life exposure to secondhand tobacco smoke and eating behaviors at age 12 years","authors":"Nerea Mourino, Zhuoya Zhang, Mónica Pérez-Ríos, Kimberly Yolton, Bruce P. Lanphear, Aimin Chen, Jessie P. Buckley, Heidi J. Kalkwarf, Kim M. Cecil, Joseph M. Braun","doi":"10.1186/s12940-024-01076-0","DOIUrl":"https://doi.org/10.1186/s12940-024-01076-0","url":null,"abstract":"Prenatal or early childhood secondhand tobacco smoke (SHS) exposure increases obesity risk. However, the potential mechanisms underlying this association are unclear, but obesogenic eating behaviors are one pathway that components of SHS could perturb. Our aim was to assess associations of prenatal and early childhood SHS exposure with adolescent eating behaviors. Data came from a prospective pregnancy and birth cohort (N = 207, Cincinnati, OH). With multiple informant models, we estimated associations of prenatal (mean of 16 and 26 weeks of gestation maternal serum cotinine concentrations) and early childhood cotinine (average concentration across ages 12, 24, 36, and 48 months) with eating behaviors at age 12 years (Child Eating Behaviors Questionnaire). We tested whether associations differed by exposure periods and adolescent’s sex. Models adjusted for maternal and child covariates. We found no statistically significant associations between cotinine measures and adolescent’s eating behaviors. Yet, in females, prenatal cotinine was associated with greater food responsiveness (β: 0.23; 95% CI: 0.08, 0.38) and lower satiety responsiveness (β: -0.14; 95% CI: -0.26, -0.02); in males, prenatal and postnatal cotinine was related to lower food responsiveness (prenatal: β: -0.25; 95% CI: -0.04, -0.06; postnatal: β: -0.36; 95% CI: -0.06, -0.11). No significant effect modification by sex or exposure window was found for other eating behaviors. Prenatal and early childhood SHS exposures were not related to adolescent’s eating behavior in this cohort; however, biological sex may modify these associations.","PeriodicalId":11686,"journal":{"name":"Environmental Health","volume":"8 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The changing health effects of air pollution exposure for respiratory diseases: a multicity study during 2017–2022","authors":"Siyu Jiang, Longjuan Tang, Zhe Lou, Haowei Wang, Ling Huang, Wei Zhao, Qingqing Wang, Ruiyun Li, Zhen Ding","doi":"10.1186/s12940-024-01083-1","DOIUrl":"https://doi.org/10.1186/s12940-024-01083-1","url":null,"abstract":"Multifaceted SARS-CoV-2 interventions have modified exposure to air pollution and dynamics of respiratory diseases. Identifying the most vulnerable individuals requires effort to build a complete picture of the dynamic health effects of air pollution exposure, accounting for disparities across population subgroups. We use generalized additive model to assess the likely changes in the hospitalisation and mortality rate as a result of exposure to PM2.5 and O3 over the course of COVID-19 pandemic. We further disaggregate the population into detailed age categories and illustrate a shifting age profile of high-risk population groups. Additionally, we apply multivariable logistic regression to integrate demographic, socioeconomic and climatic characteristics with the pollution-related excess risk. Overall, a total of 1,051,893 hospital admissions and 34,954 mortality for respiratory disease are recorded. The findings demonstrate a transition in the association between air pollutants and hospitalisation rates over time. For every 10 µg/m3 increase of PM2.5, the rate of hospital admission increased by 0.2% (95% CI: 0.1–0.7%) and 1.4% (1.0–1.7%) in the pre-pandemic and dynamic zero-COVID stage, respectively. Conversely, O3-related hospitalization rate would be increased by 0.7% (0.5–0.9%) in the pre-pandemic stage but lowered to 1.7% (1.5–1.9%) in the dynamic zero-COVID stage. Further assessment indicates a shift of high-risk people from children and young adolescents to the old, primarily the elevated hospitalization rates among the old people in Lianyungang (RR: 1.53, 95%CI: 1.46, 1.60) and Nantong (RR: 1.65, 95%CI: 1.57, 1.72) relative to those for children and young adolescents. Over the course of our study period, people with underlying diseases would have 26.5% (22.8–30.3%) and 12.7% (10.8–14.6%) higher odds of having longer hospitalisation and over 6 times higher odds of deaths after hospitalisation. Our estimates provide the first comprehensive evidence on the dynamic pollution-health associations throughout the pandemic. The results suggest that age and underlying diseases collectively determines the disparities of pollution-related health effect across population subgroups, underscoring the urgency to identifying the most vulnerable individuals to air pollution.","PeriodicalId":11686,"journal":{"name":"Environmental Health","volume":"30 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Win Thu, Alistair Woodward, Alana Cavadino, Sandar Tin Tin
{"title":"Associations between transport modes and site-specific cancers: a systematic review and meta-analysis","authors":"Win Thu, Alistair Woodward, Alana Cavadino, Sandar Tin Tin","doi":"10.1186/s12940-024-01081-3","DOIUrl":"https://doi.org/10.1186/s12940-024-01081-3","url":null,"abstract":"Physical inactivity is a global public health problem. A practical solution would be to build physical activity into the daily routine by using active modes of transport. Choice of transport mode can influence cancer risk through their effects on levels of physical activity, sedentary time, and environmental pollution. This review synthesizes existing evidence on the associations of specific transport modes with risks of site-specific cancers. Relevant literature was searched in PubMed, Embase, and Scopus from 1914 to 17th February 2023. For cancer sites with effect measures available for a specific transport mode from two or more studies, random effects meta-analyses were performed to pool relative risks (RR) comparing the highest vs. lowest activity group as well as per 10 Metabolic Equivalent of Task (MET) hour increment in transport-related physical activity per week (∼150 min of walking or 90 min of cycling). 27 eligible studies (11 cohort, 15 case-control, and 1 case-cohort) were identified, which reported the associations of transport modes with 10 site-specific cancers. In the meta-analysis, 10 MET hour increment in transport-related physical activity per week was associated with a reduction in risk for endometrial cancer (RR: 0.91, 95% CI: 0.83–0.997), colorectal cancer (RR: 0.95, 95% CI: 0.91–0.99) and breast cancer (RR: 0.99, 95% CI: 0.89–0.996). The highest level of walking only or walking and cycling combined modes, compared to the lowest level, were significantly associated with a 12% and 30% reduced risk of breast and endometrial cancers respectively. Cycling, compared to motorized modes, was associated with a lower risk of overall cancer incidence and mortality. Active transport appears to reduce cancer risk, but evidence for cancer sites other than colorectum, breast, and endometrium is currently limited.","PeriodicalId":11686,"journal":{"name":"Environmental Health","volume":"56 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exposure to ambient air pollution and cognitive function: an analysis of the English Longitudinal Study of Ageing cohort","authors":"Dylan Wood, Dimitris Evangelopoulos, Sean Beevers, Nutthida Kitwiroon, Panayotes Demakakos, Klea Katsouyanni","doi":"10.1186/s12940-024-01075-1","DOIUrl":"https://doi.org/10.1186/s12940-024-01075-1","url":null,"abstract":"An increasing number of studies suggest adverse effects of exposure to ambient air pollution on cognitive function, but the evidence is still limited. We investigated the associations between long-term exposure to air pollutants and cognitive function in the English Longitudinal Study of Ageing (ELSA) cohort of older adults. Our sample included 8,883 individuals from ELSA, based on a nationally representative study of people aged ≥ 50 years, followed-up from 2002 until 2017. Exposure to air pollutants was modelled by the CMAQ-urban dispersion model and assigned to the participants’ residential postcodes. Cognitive test scores of memory and executive function were collected biennially. The associations between these cognitive measures and exposure to ambient concentrations of NO2, PM10, PM2.5 and ozone were investigated using mixed-effects models adjusted for time-varying age, physical activity and smoking status, as well as baseline gender and level of education. Increasing long-term exposure per interquartile range (IQR) of NO2 (IQR: 13.05 μg/m3), PM10 (IQR: 3.35 μg/m3) and PM2.5 (IQR: 2.7 μg/m3) were associated with decreases in test scores of composite memory by -0.10 (95% confidence interval [CI]: -0.14, -0.07), -0.02 [-0.04, -0.01] and -0.08 [-0.11, -0.05], respectively. The same increases in NO2, PM10 and PM2.5 were associated with decreases in executive function score of -0.31 [-0.38, -0.23], -0.05 [-0.08, -0.02] and -0.16 [-0.22, -0.10], respectively. The association with ozone was inverse across both tests. Similar results were reported for the London-dwelling sub-sample of participants. The present study was based on a long follow-up with several repeated measurements per cohort participant and long-term air pollution exposure assessment at a fine spatial scale. Increasing long-term exposure to NO2, PM10 and PM2.5 was associated with a decrease in cognitive function in older adults in England. This evidence can inform policies related to modifiable environmental exposures linked to cognitive decline.","PeriodicalId":11686,"journal":{"name":"Environmental Health","volume":"27 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edgar Castro, Abbie Liu, Yaguang Wei, Anna Kosheleva, Joel Schwartz
{"title":"Correction: Modification of the PM2.5- and extreme heat-mortality relationships by historical redlining: A case-crossover study in thirteen U.S. states","authors":"Edgar Castro, Abbie Liu, Yaguang Wei, Anna Kosheleva, Joel Schwartz","doi":"10.1186/s12940-024-01072-4","DOIUrl":"https://doi.org/10.1186/s12940-024-01072-4","url":null,"abstract":"<p>\u0000<b>Correction</b><b>: </b>\u0000<b>Environ Health 23, 16 (2024)</b>\u0000</p><p>\u0000<b>https://doi.org/10.1186/s12940-024-01055-5</b>\u0000</p><br/><p>Following publication of [1], errors were found in the code used to prepare the cohort for a case-crossover analysis and the resulting data that was used for the analysis. Despite these errors, results were only marginally effected and all conclusions remain the same. A few typos were also found in the manuscript. A table of all affected texts is shown below.\u0000</p><table><thead><tr><th><p>Section</p></th><th><p>Lines</p></th><th><p>Text</p></th></tr></thead><tbody><tr><td><p>Abstract</p></td><td><p>48-51</p></td><td><p>Individuals who lived in redlined areas had an interaction odds ratio for mortality of <s>1.0093</s> <b>1.0104</b> (95% confidence interval [CI]: <s>1.0084</s> <b>1.0095</b>, <s>1.0101</s> <b>1.0114)</b> for each 10 µg m<sup>-3</sup> increase in same-day ambient PM2.5 compared to individuals who did not live in redlined areas. For extreme heat, the interaction odds ratio was <s>1.0218</s> <b>1.0146</b> (95% CI <s>1.0031</s> <b>1.0039</b>, <s>1.0408</s> <b>1.0457</b>).</p></td></tr><tr><td><p>Methods</p></td><td><p>159-161</p></td><td><p>To derive measures of extreme heat, we first calculated various percentiles of minimum temperature in each block group in each year. For our main analysis, we considered the <s>95</s> <sup><s>th</s></sup> <b>90</b> <sup><b>th</b></sup> percentile.</p></td></tr><tr><td><p>Methods</p></td><td><p>163-165</p></td><td><p>In other words, if the minimum temperature on a certain day met or exceeded the <s>95</s> <sup><s>th</s></sup> <b>90</b> <sup><b>th</b></sup> percentile of minimum temperature in that block group in that year, then that day was marked as an extreme heat day.</p></td></tr><tr><td><p>Results</p></td><td><p>229-237</p></td><td><p>We obtained <s>11,115,380</s> <b>11,076,020</b> mortality records from the <s>twelve</s> <b>thirteen</b> state departments of public health. From these records, we sequentially excluded <s>466,874</s> <b>453,754</b> deaths involving external causes; <s>139,908</s> <b>133,348</b> deaths involving individuals younger than 18 years old; 196,558 deaths with geocodes that were missing or coarser than block group-level; 331 deaths involving individuals whose home locations were outside of the state that reported their death; <s>1,392,423</s> <b>1,372,743</b> deaths before January 5<sup>th</sup>, 2001 or after December 31<sup>st</sup>, 2016 and 537 deaths whose home block groups had a population of zero according to the preceding Decennial Census (for which 4-day moving averages of population-weighted PM2.5 could not be calculated); and 34,016 deaths with lag days from 0 to 4 that included December 31<sup>st</sup> on leap years (for which Daymet predictions are not available; Figure 3)</p></td></tr><tr><td><p>Results</p></td><td><p>272-278</p></td><td><p>We found a significant interaction with exposure to any extreme heat (interaction odd","PeriodicalId":11686,"journal":{"name":"Environmental Health","volume":"47 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sophie K F Michel, Aishwarya Atmakuri, Ondine S von Ehrenstein
{"title":"Systems for rating bodies of evidence used in systematic reviews of air pollution exposure and reproductive and children's health: a methodological survey.","authors":"Sophie K F Michel, Aishwarya Atmakuri, Ondine S von Ehrenstein","doi":"10.1186/s12940-024-01069-z","DOIUrl":"10.1186/s12940-024-01069-z","url":null,"abstract":"<p><strong>Background: </strong>Translating findings from systematic reviews assessing associations between environmental exposures and reproductive and children's health into policy recommendations requires valid and transparent evidence grading.</p><p><strong>Methods: </strong>We aimed to evaluate systems for grading bodies of evidence used in systematic reviews of environmental exposures and reproductive/ children's health outcomes, by conducting a methodological survey of air pollution research, comprising a comprehensive search for and assessment of all relevant systematic reviews. To evaluate the frameworks used for rating the internal validity of primary studies and for grading bodies of evidence (multiple studies), we considered whether and how specific criteria or domains were operationalized to address reproductive/children's environmental health, e.g., whether the timing of exposure assessment was evaluated with regard to vulnerable developmental stages.</p><p><strong>Results: </strong>Eighteen out of 177 (9.8%) systematic reviews used formal systems for rating the body of evidence; 15 distinct internal validity assessment tools for primary studies, and nine different grading systems for bodies of evidence were used, with multiple modifications applied to the cited approaches. The Newcastle Ottawa Scale (NOS) and the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) framework, neither developed specifically for this field, were the most commonly used approaches for rating individual studies and bodies of evidence, respectively. Overall, the identified approaches were highly heterogeneous in both their comprehensiveness and their applicability to reproductive/children's environmental health research.</p><p><strong>Conclusion: </strong>Establishing the wider use of more appropriate evidence grading methods is instrumental both for strengthening systematic review methodologies, and for the effective development and implementation of environmental public health policies, particularly for protecting pregnant persons and children.</p>","PeriodicalId":11686,"journal":{"name":"Environmental Health","volume":"23 1","pages":"32"},"PeriodicalIF":5.3,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976715/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140305233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}