EnergyPub Date : 2024-11-05DOI: 10.1016/j.energy.2024.133625
Ahmad Mohammadi Pour , Mehrdad Setayesh Nazar , Miadreza Shafie-khah , Zita Vale
{"title":"Optimal expansion planning of a self-healing distribution system considering resiliency investment alternatives","authors":"Ahmad Mohammadi Pour , Mehrdad Setayesh Nazar , Miadreza Shafie-khah , Zita Vale","doi":"10.1016/j.energy.2024.133625","DOIUrl":"10.1016/j.energy.2024.133625","url":null,"abstract":"<div><div>This paper proposes a three-stage optimization framework for the expansion planning of a self-healing distribution system that determines the optimal characteristics of distributed generation, energy storage systems, electric vehicle charging stations, and sectionalizing switches for the planning horizon. The main contribution of this model is that the proposed model considers the resilient investment alternatives in the expansion planning exercise to reduce the system's vulnerability against external shocks. The mobile energy storage system commitment in contingent conditions is another contribution of this paper. In the first stage, the optimal location, capacity, and time of installation of the electricity facilities are calculated. Then, the optimal allocation of sectionalizing switches is performed in the second stage. The third stage consists of three levels. In the first and second levels, the optimal normal and contingent operational scheduling are determined, respectively. The system is sectionalized into multi-microgrid systems in contingent conditions. Finally, the resilient investment alternatives for the designed system are evaluated. The proposed model utilizes a self-healing index and resilient expansion planning index to assess the impacts of resilient investment alternatives on the operational scheduling conditions. The proposed model was evaluated using the IEEE 123-bus system. The proposed method reduced the estimated average value of the worst-case energy not supplied by 50.52 % for the 5th year of the planning horizon concerning the no-resiliency investment case. Further, the proposed resilience investment method increased the self-healing index by about 9.32 % concerning the no-resiliency investment case.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133625"},"PeriodicalIF":9.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Atomistic insight into the interfacial reaction and evolution between FeCr alloys and supercritical CO2 with impurities","authors":"Tingshan Guo, Zhiyuan Liang, Huaishuang Shao, Qinxin Zhao","doi":"10.1016/j.energy.2024.133726","DOIUrl":"10.1016/j.energy.2024.133726","url":null,"abstract":"<div><div>The supercritical CO<sub>2</sub> cycle offers high thermal efficiency and flexibility, enhancing energy conversion efficiency and utilization. As the commercialization of supercritical CO<sub>2</sub> cycles advances, the stability of the metal-CO<sub>2</sub> interface is the key to ensure the safety of this power cycle. In this paper the interfacial reactions between FeCr alloys and CO<sub>2</sub> with impurities were investigated using the oxidation thermodynamics and molecular dynamics. With the increase of Cr content in FeCr alloy, the adsorption stability of SO<sub>2</sub> and CO<sub>2</sub> molecules on the surface of FeCr alloy became stronger, in which CO<sub>2</sub> molecules were adsorbed and decomposed in two ways. When the C-O bond was broken, the detached O atom was in a free state or reorganized into O<sub>2</sub> molecule, while the CO molecule would be separated from the CO<sub>2</sub> molecule. In the initial oxidation stage, adding appropriate amount of H<sub>2</sub>S in CO<sub>2</sub> environment could reduce the diffusion of O atoms from the CO<sub>2</sub> molecule to Fe20Cr alloy, and the stress in the oxide film would not increase. The early oxidation behavior of Fe20Cr alloy in CO<sub>2</sub> with H<sub>2</sub>S impurity gas may prove to be an effective method for enhancing its oxidation resistance of Fe20Cr alloy.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133726"},"PeriodicalIF":9.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fault detection research on novel transfer learning-based method for cross-condition, cross-system and cross-operation in public building HVAC sensors","authors":"Boyan Zhang , Yacine Rezgui , Zhiwen Luo , Tianyi Zhao","doi":"10.1016/j.energy.2024.133704","DOIUrl":"10.1016/j.energy.2024.133704","url":null,"abstract":"<div><div>Transfer learning (TL) has the inspiring potential for artificial intelligence in heating, ventilation and air conditioning (HVAC) system with insufficient data labels. However, traditional TL-based methods are limited when applied across different conditions, systems, and operations.Unfortunately, public building HVAC systems encounter challenges related to data acquisition and richness, making it difficult to obtain data from similar HVAC systems conditions, scenarios and operations. It proposes a novel TL-based method that combines energy and mass balance constraint equation (EBCe) to diagnose the sensor faults in HVAC systems across different systems, conditions and operations.Firstly, it utilizes laboratory data as the source domain data and constructes EBCe based on the common physical laws of HVAC system to reduce the data differences between laboratory and public buildings. Then, an laplacian kernel domain-adaptive neural network (LkDaNN) is proposed to generalize more efficiently feature differences between the source domain data and target domain data. Finally, experiment analyzes the non-fault and four control-sensors fault under both cross-operation and non-cross operation conditions. The experimental results demonstrate that the EBCe-LkDaNN method achieves satisfactory fault detection and diagnosis (FDD) performance.The overall FDD accuracy of porposed method can reach 90.72 % and 88.64 % under different cross-operation, respectively. Practical application of the EBCe-LkDaNN strategy for HVAC sensor FDD are discussed at last.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133704"},"PeriodicalIF":9.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnergyPub Date : 2024-11-05DOI: 10.1016/j.energy.2024.133713
Viktoria Carmen Illyés , Gioele Di Marcoberardino , Andreas Werner , Markus Haider , Giampaolo Manzolini
{"title":"Experimental evaluation of the CO2-based mixture CO2/C6F6 in a recuperated transcritical cycle","authors":"Viktoria Carmen Illyés , Gioele Di Marcoberardino , Andreas Werner , Markus Haider , Giampaolo Manzolini","doi":"10.1016/j.energy.2024.133713","DOIUrl":"10.1016/j.energy.2024.133713","url":null,"abstract":"<div><div>Zeotropic CO<sub>2</sub>-based mixtures as working fluids in the power block have the potential to enhance concentrated solar power (CSP) plants and other high-temperature heat source applications. One promising working fluid is the CO<sub>2</sub>/C<sub>6</sub>F<sub>6</sub> mixture, which enables condensation at 50 °C – a necessity when dry cooling with ambient air. Given the many theoretical studies on topics such as potential, optimized performance, or economic assessments, an experimental validation and a reality-check in a facility of significant size is required to vindicate further research. The experimental campaign was performed on pure CO<sub>2</sub> and the CO<sub>2</sub>/C<sub>6</sub>F<sub>6</sub> mixture in two compositions in a test facility (recuperated transcritical cycle). The long-term test (170h) revealed no operational issues, including no signs of thermal degradation. However, a composition shift - an effect previously regarded as an issue in closed cycles with zeotropic mixtures - affected the conditions at the vapor-liquid-equilibrium in the systems tank but also self-stabilizes the system to remain condensing, even at higher ambient air temperatures. The successful proof-of-concept at cycle temperatures of up to 500 °C – significantly higher than earlier studies on mixtures reported (<300 °C) – justifies further research in this area.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133713"},"PeriodicalIF":9.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High gain Bi-directional KY converter for low power EV applications","authors":"K Mounika Nagabushanam, Tarkeshwar Mahto, Somesh Vinayak Tewari, Ramanjaneya Reddy Udumula","doi":"10.1016/j.energy.2024.133718","DOIUrl":"10.1016/j.energy.2024.133718","url":null,"abstract":"<div><div>In electric vehicles (EVs), the type of electric motor and converter technology have a significant impact on regulating the operational characteristics of the vehicle. Therefore, in this work, the modified bi-directional KY converter (BKYC) is proposed for EV applications. The main contributions of the proposed converter are high step-up/step-down conversion gain, bi-directional power flow, simplified control structure, continuous current, common ground, low volume, and high efficiency. An inductor on either side of the converter ensures continuous current flow and passive components are arranged to operate in series to offer high step-up/step-down conversion. The charging and discharging operations, steady-state analysis, and design process of the proposed converter are discussed in detail and compared with similar bi-directional converter topologies. Further, the efficiency analysis of the proposed converter is presented and found that the efficacy of 95.51 % in charging operation and 96.52 % in discharging operation of operation. The simulations are carried out using MATLAB/Simulink environment. Further, a prototype of a modified bi-directional KY converter is implemented with a TMS320F28335 processor and validated with theoretical and simulation counterparts.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133718"},"PeriodicalIF":9.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnergyPub Date : 2024-11-05DOI: 10.1016/j.energy.2024.133709
Chen Zhou , Xing Zhou , Yu Wang , Yukang Xiao , Yajie Liu
{"title":"Applicability assessment of equivalent circuit-thermal coupling models on LiFePO4 batteries operated under wide-temperature and high-rate pulse discharge conditions","authors":"Chen Zhou , Xing Zhou , Yu Wang , Yukang Xiao , Yajie Liu","doi":"10.1016/j.energy.2024.133709","DOIUrl":"10.1016/j.energy.2024.133709","url":null,"abstract":"<div><div>In military scenario, high-power lithium iron phosphate (LFP) batteries are frequently used under wide-temperature and high-rate pulse discharge conditions. An accurate electro-thermal coupling model (ETCM) is crucial for the safe operations. Equivalent circuit-thermal coupling model (ECTCM), which combines equivalent circuit model (ECM) and lumped thermal model, is the most widely used type of ETCM in applications. However, the applicability of ECTCM under wide-temperature and high-rate pulse discharge conditions is not clear. To assess the applicability of ECTCM under these special conditions, this study establishes six typical ECTCMs and accurately identify their corresponding model parameters. Then, these models are tested under high-rate pulse discharge conditions from −40 °C to 50 °C. The results indicate that ECTCMs are effective for pulse discharge at ambient and high temperatures, but not suitable for low-temperature conditions below 0 °C. When the temperature is below 0 °C, the pulse discharge voltage of the batteries can not be accurately simulated by ECTCMs. This work provides guidance for electro-thermal coupling modeling under high-rate pulse discharge conditions, and also points out the direction for the development of high-precision ETCM capable of handling wide-temperature and high-rate pulse discharge in the future.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133709"},"PeriodicalIF":9.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnergyPub Date : 2024-11-05DOI: 10.1016/j.energy.2024.133656
Emmanuel Joel Aikins Abakah , David Xuefeng Shao , Aviral Kumar Tiwari , Chien-Chiang Lee
{"title":"Asymmetric relationship between carbon market and energy markets","authors":"Emmanuel Joel Aikins Abakah , David Xuefeng Shao , Aviral Kumar Tiwari , Chien-Chiang Lee","doi":"10.1016/j.energy.2024.133656","DOIUrl":"10.1016/j.energy.2024.133656","url":null,"abstract":"<div><div>This paper examines the asymmetric returns spillovers and time-frequency causality between the carbon emissions market and the energy market. To this end, we apply the time-varying asymmetry spillovers and Granger causality over the spectrum approaches. This research uses daily price indices of natural gas, gasoline, gas oil, heating oil, crude oil, coal, petroleum, kerosene, propane, and diesel to denote the energy market and the European Union Emissions Trading System (i.e., certificate prices for CO2 emissions) to represent the carbon market. Using historical time-series data from May 18, 2011, to September 23, 2020, the study reveals interesting and convincing empirical results showing that the carbon and energy markets are dynamically and asymmetrically connected. Further results show that the carbon market predominantly explains positive or negative returns in the energy market. Regarding volatility transmission, the study demonstrates that the carbon market is a primary net receiver of good or bad volatility transmitted from the energy market, such as crude oil, petroleum, heating oil, diesel, and kerosene.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133656"},"PeriodicalIF":9.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnergyPub Date : 2024-11-05DOI: 10.1016/j.energy.2024.133720
Sajjad Arefdehghani , Alireza Rostamzadeh Khosroshahi , Navid Kousheshi , Ali Saberi Mehr , Hossein Nami
{"title":"Techno-economic assessment of decentralized low-carbon power plants based on solid oxide fuel cell equipped with calcium looping carbon capture","authors":"Sajjad Arefdehghani , Alireza Rostamzadeh Khosroshahi , Navid Kousheshi , Ali Saberi Mehr , Hossein Nami","doi":"10.1016/j.energy.2024.133720","DOIUrl":"10.1016/j.energy.2024.133720","url":null,"abstract":"<div><div>Integrating solid oxide fuel cells (SOFCs) with carbon capture technologies aligns with the intention to decarbonize the electricity sector. This study explores two configurations of SOFCs combined with calcium looping (CaL) carbon capture technology (SOFC/CaL): one with auxiliary heaters and another with additional fuel to supply the energy required for the carbon capture process. Results indicate that the electrical efficiency of the SOFC/CaL system is approximately 26 % lower than that of a standalone SOFC, though the overall efficiency (considering both electricity and heat as products) remains comparable. However, CO<sub>2</sub> emission is 314.7 kg/MWh for standalone SOFC, 125.8 kg/MWh for SOFC/CaL equipped with auxiliary heaters, and 22.4 kg/MWh for SOFC/CaL retrofitted with additional fuel. The scale of the SOFC and the fuel price significantly affect the carbon capture economy and the required CO<sub>2</sub> tax for cost parity. For a 10 MW plant with a fuel cost of 10 USD/GJ, the levelized cost of electricity is estimated at 66.7 USD/MWh for the standalone SOFC and 82.5 USD/MWh for the SOFC/CaL. A CO<sub>2</sub> tax of 39–53 USD/tCO<sub>2</sub> is necessary to achieve cost parity.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133720"},"PeriodicalIF":9.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A portable balloon integrated photovoltaic system deployed at low altitude","authors":"Tingsheng Zhang , Lingfei Qi , Zutao Zhang , Jinyue Yan","doi":"10.1016/j.energy.2024.133722","DOIUrl":"10.1016/j.energy.2024.133722","url":null,"abstract":"<div><div>This paper proposed a portable balloon-integrated photovoltaic system (BIPVS) deployed at low altitude. The inflatable and deflatable design enhances the proposed system flexibility and mobility, enabling it have a wider range of application scenarios. Case studies were conducted based on cities' data of Vasteras, Vancouver, New York, Shanghai and Hong Kong to evaluate 10,000 BIPVS's annual power generation potential. Mid-to-high latitudes are not suitable for photovoltaic power generation in winter due to snow and ice coverage. Excluding the unsuitable winter months, simulation results show that the average monthly power generation of the BIPVSs amounts to 3.921 GWh, 4.238 GWh, 4.275 GWh, 3.337 GWh, and 3.379 GWh, respectively, during the effective working months within a year, which shows the superior performance of mid-to-high latitudes over their low latitudes. Over the life cycle, the BIPVSs exhibit a cumulative power generation capacity, amounting to 479.492 GWh, 592.18 GWh, 672.105 GWh, 641.155 GWh, and 708.334 GWh, respectively, and their total profits are 79.614 million USD, 37.007 million USD, 75.146 million USD, 12.946 million USD, 107.369 million USD, accompanied by the return on investment of 218.6 %, 101.6 %, 206.3 %, 35.5 %, 294.8 %, respectively. These findings illustrate the significant energy and economic advantages and potential of BIPVS.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133722"},"PeriodicalIF":9.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EnergyPub Date : 2024-11-05DOI: 10.1016/j.energy.2024.133631
Liting Deng , Yanyan Xu , Feng Xue , Zheng Pei
{"title":"Mining interpretable fuzzy If-Then linguistic rules from energy and economic data to forecast CO2 emissions of regions in China","authors":"Liting Deng , Yanyan Xu , Feng Xue , Zheng Pei","doi":"10.1016/j.energy.2024.133631","DOIUrl":"10.1016/j.energy.2024.133631","url":null,"abstract":"<div><div>Forecasting CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emission is the one of most important issues for the “<span><math><mrow><mn>30</mn><mi>⋅</mi><mn>60</mn></mrow></math></span>” CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emission target in China. Due to unbalanced socio-economic developments of regions in China, exactly forecasting CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions of provinces depend on their energy consumptions and economic developments. In the paper, a novel method based on <span><math><mi>K</mi></math></span>-means clustering method and computing with words is proposed to forecast CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions of 30 provinces, which is consisted by (1) <span><math><mi>K</mi></math></span>-means clustering method is used to respectively cluster energy consumption and economic datasets of provinces and the interpretable fuzzy If-Then linguistic rules of CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions are mined from the clusters; (2) computing with words method is utilized to transform fuzzy If-Then linguistic rules into fuzzy If-Then rules with membership functions on the universe of discourse; (3) a fuzzy inference method is adopted to forecast CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions of 30 provinces. To show the usefulness and effectiveness of the novel method, energy consumptions and economic datasets of 30 provinces from 1997 to 2021 are employed to forecast CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions, metrics of MAE, MAPE, RMSE and the out-of-sample <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>o</mi><mi>o</mi><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> are utilized to evaluate CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emission forecasting of 30 provinces, means of them reach 13.304, 15.279, 0.081 and 0.965. By comparative analysis for forecasting CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions of 30 provinces, means of MAE, MAPE, RMSE and the out-of-sample <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mi>o</mi><mi>o</mi><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> by the novel method are more than SVM, ANFIS and MLR methods. In addition, four kinds of mechanisms influencing CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> are discovered and analyzed by the fuzzy If-Then linguistic rules of 30 provinces, which can help to improve energy consumption and sustainable development of 30 provinces in China.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133631"},"PeriodicalIF":9.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}